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ABSTRACT

The Modal Identification Experiment (MIE) is a proposed experiment to define the

dynamic characteristics of Space Station Freedom. Previous studies have emphasized

free-decay modal identification. The feasibility of using a forced response method

(Observer/Kalman Filter Identification (OKID)) is addressed. The interest in using

OKID is to (1) determine the input mode shape matrix which can be used for controller

design or control-structure interaction analysis, and (2) investigate if forced response

methods may aid in separating closely space modes. A model of the SC-7 configuration

of Space Station Freedom was excited using simulated control system thrusters to obtain

acceleration output. It is shown that an 'optimum' number of outputs exist for OKID.

To recover global mode shapes, a modified method, called Global-Local OKID, was

developed. This study shows that using data from a long forced response followed by

free-decay leads to the 'best' modal identification. Twelve out of the thirteen target

modes were identified for such an output. In contrast, five, six, and six target modes

were recovered from the three individual twenty second forced simulations. In addition,

the 'on-off' commands to the thrusters can be used to produce step inputs for system

identification.
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NOMENCLATURE

n

AC

Bt _

C

D

A

B

u

B

P

No

N/

Y

Y

System order

Continuous system (state) matrix

Continuous control input matrix

Output matrix

Direct transmission matrix

Discrete system (state) matrix

Discrete control input matrix

Observer system (state) matrix

Observer control input matrix

Observer decay

Number of outputs (measurements)

Number of inputs (excitations)

Data length

Observer data length

Input data matrix

Output data matrix

System Markov Parameter matrix

Observer Markov Parameter matrix
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V

W

H(k- I)

P
FI

Discrete observability matrix and/or Observer input matrix

Discrete controllability matrix

(k-1)th time shift Hankei data matrix

Truncated left matrix of singular vectors

Truncated diagonal matrix of singular values

Truncated right matrix of singular vectors

G Observer gain

NO" Independent output subset in OKID

Remaining output subset (No - No" )

O Output matrix for No"

o

i

C

Direct transmission matrix for No"

Output matrix for tX_

b m

Direct transmission matrix for No
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Io INTRODUCTION

Space structures (e.g., Space Station Freedom (SSF)) are becoming increasingly

complex. To mathematically model such structures requires high-fidelity finite element

methods, which may necessarily increase cost (time, money, etc.). Component mode

synthesis (CMS) techniques can be used to circumvent this dilemma. These techniques

discretize a structure into components and analyses are done component by component.

Component results are then truncated and combined to form a complete system model.

But even CMS, while computationally efficient, has its drawbacks, namely, it is highly

susceptible to modal truncation errors.' Consequently, any finite element or continuum

model, for that matter, will be in error primarily due to modeling issues. These models,

therefore, require validation or correction before they can be used for control design or

control-structure interaction analysis, for example. One method which accomplishes this

task is linear system identification. Linear system identification is the process of using

experimental data to obtain a linear model and, if unknown, the data's noise

characteristics. The data can be obtained from either ground-basod or operational

testing. However, this process is also not without difficulties? ,3 Some of the challenging

issues include extrapolation from a one-g to a zero-g environment if ground-based data

is used, high modal density, low frequency range of interest, nonlinearity, non-classical

damping, and limited excitation and measurement capabilities. 4 In the end, a model

based as much on theory as on experiment is required for any meaningful analysis.

The Modal Identification Experiment (MIE) is a proposed experiment to determine

the dynamic characteristics of the SSF in orbit. While MIE is not required in the Space



Station Freedom Program, it is an extension of the structure verification effort and there

are numerous benefits. The first benefit is to improve the finite element modeling

techniques for large space structures. In particular, damping estimates for these

structures are still basically unknown. Good estimates are necessary because the steady

state vibration amplitude near a resonance frequency is inversely proportional to the

damping. Another benefit is to provide improvements in second-generation design of

equipment. 5

Many methods exist in the linear system identification area. 6 Some work in time and

others in the frequency domain. This study considers only time-domain methods since

they were found to be superior to the frequency domain methods on the SSF due to the

wide frequency range of interestJ In particular, the Eigensystem Realization Algorithm

(ERA) 7 is one such method which can use free-decay for modal identification. However,

it may be difficult to identify closely spaced modes because of their similarity in modal

amplitudes. In addition, one mode may decay faster than the other and may not be

identified. A forced response method may provide better identification since both modes

will be varying in amplitude and phase during the excitation.

Recently, the Observer/Kalman Filter Identification Method (OKID) s was developed

for application to forced response data. Previous studies have addressed methods for

determining the modal characteristics using free response data. 4 This study addresses the

feasibility of using the OKID method. One issue is the knowledge of the input forces

since there is no plan to measure the forces on the SSF in orbit. In particular, the actual

inputs produced by the ACS (attitude control system) jets are known to have a rise and



fall time, whereas, the commanded inputs are step inputs. The effect of this on the

system identification using OKID is investigated. Another issue is the limited amount

of forced response data. That is, the baseline experiment length is 120 seconds with only

20 seconds of forcing.



II. FORMULATION OF EIGENSYSTEM REALIZATION ALGORITHM (ERA)

The equations of motion for a linear structure are often written as a set of finite-

dimensional, linear, second-order differential equations

M(t)lt(t ) + Cv(t)tl(t ) + K(t)q(t) = f(t) (2.1)

where the square matrices M(t) and K(t) are mass and stiffness and Cv(t ) represents the

damping mechanism, which is assumed to be viscous.

generalized displacements and f(t) is the load vector.

With

The vector q(t) contains the

 lq,t,!

Eq. (2.1) can be equivalently put into state-variable or fundamental form

_(t) = A,(t)x(O • B,(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(2.2)

where subscript c denotes a continuous time matrix. The matrix A c represents the mass,

damping, and stiffness, and B, characterizes the input u(t), that is, it contains the input

locations and could also contain conversion factors if u(t) is, for example, voltage. The

measurement matrix C selects the proper terms from the state vector x(t) and finally,

D is the direct transmission matrix where the input appears directly in the measurement

vector y(t) and exists only if the measurements are acceleration.

4



A solution to Eqs. (2.2) exists if At(t) and Be(t) do not vary with time (in which case

C(t) and D(t) also do not vary with time) and is written
I

x(t) = eA'_'-°X(to) + I e_'°-'_BcuO')d_
(2.3)

Without loss of generality, let t0=0. Then Eq. (2.3) becomes

I

x(t) = e'tx(0) + I eA'_t-°B'u(r)dr
0

= :=z = z:= =

(2.4)

Eq. (2.4) should be discretized in time to reflect the fact that in practice measurements

are available at discrete times only. Therefore, if we assume a sampling rate of At then

t--kAt

kat

x(kAt) = eA'katX(O) + I eA'Ctat-'_B_u(z)dr
0

k = [, ..., oo
(2.5)

If k is increased by 1 to k+ 1 we obtain

x([k+l]At) ffi e".'x(kAt) +

@+1)_

l eA,_imlat-'_Bcu(_)d_ , k=0,..., oo (2.6)
tat

Eq. (2.6) is cumbersome to use in practice because of the need to integrate for each

value of k. However, if we assume that the input u(s) is constant over the interval

[kAt,(k+l)At), that is, u(s) =u(kA0 for all s when kAt <s <(k+l)At (which is often

done in digital control applications where the input is generated by computer), then it can

be shown that Eq. (2.6) becomes



x([k+l]_) ffiax(_t) + Bu(te_t)

y(k_) ,. cx(kas) + Du(tat)
, k *0, 1,..., ** (2.7)

where

a = eA." , _ a?(_t)"
,,,-o m[

B- eA"d_ Bc = _ Bc

Dropping the notation kAt in favor of k, realizing that when we say k we mean kAt,

we obtain the discrete state-variable equations

x(t÷l) ,, ax(k) + au(t)

y(k) = Cx(k) + Du(k) , k=0, l,..., Q, (2.8)

The matrix A _(n,n), where _(n,n) is the set of real n x n matrices, BE_(n,bli),

C_(No,n), and D_(No,NO where No and Ni are the number of outputs and inputs,

respectively, and n is the system order (equal to twice the number of vibration modes).

Fxls. (2.8) represent a recursive algorithm for computing the measurement responses

(e.g., position, velocity, or acceleration) at the sampling instances without the need for

integration. The only assumption is that the input is constant over the sampling time.

This assumption is called a zero-order hold and will be discussed further in section 8.3.

The output can be calculated from Eqs. (2.8) but requires the state vector. An

explicit solution (depending only on the input) can be obtained by carrying out a few

operations from Eqs. (2.8). Assuming x(0)=0



xO) --Bu(O)

x(2) = ABu(O) + Bu(1)

x(3) = A2Bu(O) + ABu(1) + Bu(2)

y(O) ,= Du(O)

y0) = CBu(O)+DUO)

y(2) = CA Bu(O) +CBu(I) + Du(2)

y(3) = CA2Bu(O) + CABu(l) + CBu(2) +Du(3)

From above, the solution can then be written as

where

y(0 - _ r,_,u(O
1-0

(2.9)

D j=0= CAs-'B j>0

Ys ,j_O are calledthe Markov Parameters or pulseresponse functions and are the

solutiontoEqs. (2.8)when a unit pulseis applied,i.e.,

I k =0u(k)= 0 k>0

It should be pointed out that the Markov Parameters are unique while {A, B, C, D} need

not be unique. That is, there exists many sets of {A, B, C, D} that give the same pulse

response. To see this, let T represent a non-singular coordinate transformation (z = Tx),

then



A / _ T-IAT

B I = T"IB

C I = CT

The Maxkov Parameters under this transformation axe

y/k = CIA/k-I BI = ( CT)(T-_ A T)k-I( T-I B) (2.10)

But since (T-I A T) k'l = T-IA k-I T (Appendix A), Eq. (2.10) becomes

YIk ": C,4k-I B -- Yk

Since there are an infinite number of coordinate transformations, there are an infinite

number of realizations that give the same Maxkov Parameters.

For a linear system with zero-order hold inputs, the Markov Parameters contain all

the information about the system (i.e., A, B, C, D). The purpose of minimum

realization theory is to find state-space matrices {A ,B, C, D} given the sequence of

Markov Parameters Yk , 0 < k < oo such that the dimension of A is as small as possible.

To realize the state-space matrices from test data we make use of the following result

from Ho and Kalman9:

The s_uence Yk has a finite-dimensional realization if and only if there is

an integer n and constants (or I , ot2 , ..., or) such that

R

i-I

for all j > 0.

8



Simply put, this mean that there are only n linearly independent Markov Parameters.

To test this result, and as an application to be used later, let us form therNo x cNi

block data matrix

H(k- 1) ffi

vk rk.2 ...

v,., ]% v,., ... Y,.c
:. [ ".. [

YIt.r-I Yk.r Yk.r÷, "'" Yk.r.c-:

k>l (2.11)

H(k-l) is called a generalized Hankel matrix where No and Ni are the number of

measurements (outputs) and inputs, respectively. In theory, we have the following result

lim rank[H(k-1)] = n
r,Lx._oo

In practice, however, H(k-l) is usually full rank for all values of r and c due to noise.

Eq. (2.11) is composed of pulse response data where each Markov Parameter, of size

NoxNi, represents the response at a particular time instant. Each Markov Parameter

can be partitioned as follows

gJ

v,, v,."

:. " ".. i

YNo, Y_2 "'" Y/vo_

j _k,k+ 1, ...,k+r+c-2

where the first column represents the response at the No outputs due to a pulse input at

the first input, keeping all other inputs at zero. Likewise, the last column is the response

at the No outputs due to a pulse input at the NYth input, keeping all other inputs at zero.

9



Notice that the Hankel matrix consists of Markov Parameters that are incremented

equally in the row and column directions. This does not have to be the case but will not

be discussed further.

Eq. (2.11) can also be written in the form

H(k-l) =

CAt-IB CAtB CAt*IB ... CAt'C-2B

CAtB CAt'IB CAt'2B ... CAt'C-3B

:. : : .. •

CAt,,-2B CAt.,-IB ...... CAt*,.c-3 B

(2.12)

or more simply as

where

H(k-1) = VA k'l W

C

CA

V- CA 2 , W = [B AB A2B ... A_-'B]

CA'-'

(2.13)

V and W are the discrete observability and controllability matrices and are of sizes

r No x n and n x c Ni , respectively.

Let us briefly discuss the significance of these two matrices. The state vector in Eqs.

(2.8) can be succinctly written as

10



x(p)-Avx(O) = [B AB A2B ... AI'-'B]
(p-2)], -%v,

t u(0) .I

(2.14)

for p>0. Eq. (2.14) suggests an important question. That is, can the state be driven

to any arbitrary state from an initial state by a proper selection of the input'/ We can

then define the following

The system (Eqs. 2.8) is (completely) state controllable if any state can be reached from

any initial state in a finite time interval by some finite control action

(input).

Obviously, this controllability is related to the matrix Wp. In particular, the solution for

the control action becomes

u, W;

where + denotes the pseudoinverse. For the input to affect the state [x(p)], Wp has to

be full row rank. The size of W is nxpNi. If we assume that n>pNi, then there

exists more equations than unknowns and a least squares solution can be performed, in

which case it is not possible to exactly reach an arbitrarily selected state because an error

term will always exist (i.e. we can only minimize the error term). However, if we

assume that n<pNi, then although a non-unique solution for n<pNi exists, we can

n / and because Wp has to be full row

"1

exactly reach the state. Therefore, p > integer -_
J

rank, the state is controllable if rank[W e] =n. A physical interpretation of this is that

II



there are n basis vectors of Wp that span the set of controllable states.

To examine observability, consider the output from Eqs. (2.8). The observability

matrix is

C

CA

gp = CA 2

!

.CA p-I.

and must be full column rank. Like controllability, we can define the following

The system (Eqs. 2.8) is (completely) state observable if the knowledge of the

input u(k) and the output y(k) completely determines the state x(p) where O<_kgp.

From Kalman's duality theorem I°, the corresponding statements for observability follow

from the previous controllability discussion. That is, the state is observable if

rank [ Vp] = n .

The concepts of observability and controllability play an important role in system

identification. This is important because it can be shown that a minimum realization

exists if and only if a system is observable and controllable I_.

It is now necessary to condense the Hankel matrix in Eq. (2.11). The three most

common data reduction algorithms are least squares, transformations, and coherent

averaging I_. We will consider only the transformation algorithms, in particular, the

singular value decomposition (SVD). Simply put, the SVD allows the determination of

12



the rank of a matrix (Appendix B). The Hankel matrix for k=l is decomposed as

follows

T

H(0),_,,cM = P, no,,no D,noxcM Q cM,cM

Theoretically, the number of non-zero singular values in D is taken as the rank of H(0).

Practically, all singular values will be non-zero due to measurement noise, computer

round-off, etc. The problem then is how to select a cut-off. If the singular values

decrease significantly then rank selection is simple. This case is shown by the top graph

of Figure 2.1. The clean data (noise tree) represents a three-degree-of-freedom

(order=six) simulation (discussed in section 6.2). Because the system has order six there

should, theoretically, be only six non-zero singular values. The non-zero singular values

beyond six ale due to round-off errors. If, however, they transition smoothly (which

almost always occurs for real data) one is at a loss, as shown in the bottom graph of

Figure 2.1. This noisy data was obtained from simulation results on the SC-7

configuration of $SF (discussed in chapter 9). Typical rank selection methods include

keeping all singular values above a prescribed tolerance or choosing where there is a

sudden change in slope of successive singular values n. It should be noted that this rank

will represent only the strong modes (highly excited). There will often be modes

(weakly or not at all excited) which may not appear in the decomposition. Denoting this

rank by n, truncate H(0) such that

H (0),so,_M - Prno,. D.,,. Q r cM (2.15)

where we have selected the first n columns of P and Q and the first n columns and

13
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rows of D. Hereafter, denote the truncatedversions of P, D, Q as P., D., Q,.

Equating Eq. (2,15) and (2.13), remembering that k--1

p.D.Q[ = vw

Them am three natural ways to partition Eq. (2.16).

(2.16)

The input normal form is

The output normal form is

D rW= ,Q,

The internally balanced form is

v ; p,D7

/)in_r
W _ _n _m

(2.17)

It has been shown by Juang _3 that while there is really no essential numerical difference

between the three forms, the internally balanced form is slightly better conditioned and

will therefore be used in this development. .

From Eqs. (2.13) and (2.17), we immediately have

c- _,,oV:E_P,D7

B = WE_ = 131norF_s _n _M

E_, and Esw are selection matrices and denote

15



E..: ... (No x rNo) , E_s =

OM

OM

OM

(cNix

where ON,, and 0_ are zero square matrices. These matrices are used as a notational

device rather than computationally. The A matrix may be obtained from Eq. (2.13) with

kffi2

H(I) = VA w

Since V is full row rank and W full column rank

A = (VTV) -I VrH(1) Wr(wwr) -i

But making use of the orthogonality of V and W and Eqs. (2.17)

(VZV)_ 1 Vz {_inprp Dln_-t191npr = D_Inp_

WT(WW r) = 13 Dia_Dtnf)rf) D1n_-1 = Q_D_ sn

Therefore,

A = D_,tnP[H(I) t3 D -In
_tg, n n

and a minimum realization (of order n) exists and is given by

ffi F P Dtn
C "No" m a

A D_m r D-In= P/,H(I)Q,, ,,

otrz orF
B ---" vn _.a _N_

(2.18)

An eigendecomposition on the discrete matrix A such that

16



A_o = _oz

allows for the determination of the discrete eigenvalues located along the diagonal of the

z matrix. Transform the discrete eigenvalues to continuous space by

ln(zt) i= l,...,n
Xt" At

ifk=l isusedinFxl.(2.11),ReOh) = -_,w.,and ImO_,)= wd,=w.,fi-_, _ ; w,i i is the

damped natural frequency. The system natural frequency and damping are then

w,,=N
- Re

w,,

where I [ denotes magnitude. The output and input mode shapes (usually referred to

as mode shapes and modal participation factors, respectively) can then be determined

from C_p and _,-_B. This is the formulation of the ERA. Free-decay, instead of pulse

response data, can also be used in the Hankel matrix since it can be shown that they have

the same structure as the Markov Parameters.'4 In summary, the computational steps are

1) Obtain pulse response or free-decay data

2) Form Hankel matrices H(0) and H(I); Eq. (2.11)

3) Perform the SVD on H(0) and truncate keeping only the

significant modes; Eq. (2.15)

4) Compute {A, B,C,D}; Eqs. (2.18). If using pulse response, D obtained from

first Nilth columns of Y matrix. If using free-decay, D does not exist

17



III. FORMULATION OF OBSERVER/KALMANIDENTIFICATION (OKID)

The following formulationparallelsthedevelopmentpresentedin Ref. 8, We start

with the familiar state-variableequations,

x(k+l)- ax(k)+ Bu(/0
k>O (3.1)

y(k)= cx(k)÷ Du(k) '

Assuming that this system is initially at rest (x(O)--O), the input/output histories can be

represented in matrixform as

Y_,,t = }'No_ Ml UMI_ I (3.2)

where

y = [y(o) y(1).., y(t-l)]

r [D CB cAa...Ca'-2B]

"u(0) u(l) u(2) ... u(l-l)"

u(0) u(l) ... u(l-2)

u(0) ... u(/-3)U ag

uf0)

Y represents the pulse response matrix (whose block elements are known as Markov

Parameters) and is of dimension No x Nil where 1 is the number of data points, y is

the known output data matrix, and U is the known input data matrix in upper block

triangular form.

A comment should be made regarding Eq. (3.2). For a full rank input data matrix

U, Y can be solved from Eq. (3.2) for m=l since the number of equations is equal to

the number of unknowns. A number of problems quickly arise with this course of

18



action. The size of U would be considerable since a large 1 is usually required for

'good' identification. This presents computer memory limitations. Furthermore, if

sufficiently rich inputs are not used, U _ becomes ill-conditioned. And lastly, one input

may be inadequate to identify all the structural modes regardless of the number of

outputs. For m > 1, Y will not be unique, whereas it is known that it must be unique

for a finite-dimensional linear system. That is, we cannot know the solution for Y out

of an infinite number of solutions.

If we assume that A is asymptotically stable, that is, Ak--O k>p, then Eq. (3.2)

can be writtenas

(3.3)

where

U

[y(0) y(l)

[D CB CAB ...

u(O)uO) u(2)

u(O) u(1)

u(O)

u(p) ... u(t-D

u(p-l) ... u(l-2)

uCp-2) ... u(l-3)

u(O) ... u(l-p-ll

We realize that as p increases the approximation in Eq. (3.3) becomes more exact.

Unfortunately, a large p is required for lightly damped structures. We now face the

same problem we had in trying to solve for Y in Eq. (3.2), namely, the large size of U.

This dilemma can be solved, however, if we feed the output to the state equation. This

19



will =transform the state in Eqs. (3.1) to what appears as an observer state. An observer

determines state estimates from a dynamic system for the state of another system. Eqs.

(3.1) can then be solved because it will artificially increase the system damping due to

the arbitrariness of the observer gain. The observer model is constructed from Eqs. (3.1)

by adding and subtracting a state term, Gy(k), where G is

the observer gain, to give

x(k+l) ffi Ax(k) + Bu(k) + Gy(k) -Gy(k)

y(k) = Cx(k) + Du(k)

or by substituting y(k) from the above equation

x(k+l) - ax(k) + nu(k) + C[Cx(k). Oufk)] - Cy(k)

= (.4 + a CDx(k)+ (a + aO)u(k) - Gy(k)

Now introduce the following notation

B =

toyieldthelinearobservermodel

v(k)

A +GC

[B+CO, -c]

. ["'/"]
Ly(k)J

2(t+ l) = .]_(k) + _ vft)

y(k) ,, c_(k) + Ou(k)
, k>O

The matrix representation of the input/output histories of Eqs. (3.4) is

where

(3.4)

(3.5)
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V :gg

"u(o)u(l)

v(O)
u(2) ... u(/-l)"

v(l) ... v(/'2)

v(o) ... vO-3)
%. |

v(o) j

u

Y will be referred to as the Observer Markov Parameter matrix because it is the matrix

of Markov Parameters of an observer system. Note that the size of V is even larger than

U because we have included the outputs in the input matrix. As before, if we assume

that A is asymptotically stable, Ak--0 k_p, then Eq. (3.5) becomes

where

y,., - r,. [o..,_..1 v[o.'_,'-].,

y * [y(O) y(1) y(2)..,y(l-l)]

. [o ...

(3.6)

V

u(l) u(2)

v(O) v(l)

v(O)

,.°

,.°

,,.

u(p) ... u(t-l)

v(p-1) ... v(I-2)

v(p-2)-., v(l-3)

i "-. "

v(O) ... v(t-p-ll

The next objective is to compute the system Markov Parameters from the Observer

Markov Parameters. Since Yt = CAk-I B, let Yt = C,] t-_B and define the following
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.Y i []t O Y| Y| ... Yl-|] " [D CJ_ CAB ,- CAI-'B]

, ,
Then, the relationship between the Observer Markov Parameters and the system Markov

Parameters can be shown to bes

,._ , k:_ 1 (3.7)

Yo . }'o z D

Note that for k>p+l, Y_ and therefore Yk<_' and Ykc_ are considered to be zero.

Therefore, F_,qs. (3.7) can be written as

Y_ ','"+E Y,'_,, k--1,...,p
i-i

P

Yk = _ -_Y_Yk-, , k=p+l,...,

(3.8)

ill I

Observe from Eqs. (3.8) that by the choice of p, there will be only p independent

Markov and Observer Markov Parameters and consequently the maximum system order

is (No)p (see Eq. (2.11)). Solve Eq. (3.6) for Y and use Eqs. (3.8) to recover Y. It

is important to realize that the inputs and outputs must be as linearly independent as

possible to prevent any numerical ill-conditioning of the V matrix in Eq. (3.6)? A state

space model, (A,B,C,D), may then be realized from the sequence Yk using ERA 7.
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IV. FORMULATION OF GLOBAL-LOCAL OKID (GLOKID)

4.1 Introduction

It has been shown that the OKID uses general input/output data to compute the pulse
-.: _-!_. __ _ - . ....

response of an asymptotically stable observer. The Markov Parameters of the original

system are then determined recursively from the Markov Parameters of the observer

system from which a realization can be obtained. However, this method may have

difficulties if a limited amount of data is available for the identification process and

limited capability to perform repeated experiments. This will be true of orbiting

structures such as the Space Station. Also, since these vehicles are becoming more

complex, e.g., high modal density, it may be necessary to use many outputs and inputs.

In addition, spatial information may be lost if not all the measurements are used and

there may be numerical ill-conditioning problems when the measurements are not all

independent.

Section 4.2 presents a new version of OKID suited for these purposes. This

modified method (GLOKID) considers a subset of outputs from which 'system'

frequencies and damping are obtained. The global mode shapes are then formed by

appending two local mode shapes, one from OKID and the other from a least squares

process on the remaining measurement set (i.e., the set not used in OKID).

4.2 Problem Formulation

GLOKID begins with the premise that only a few outputs should be used for

determination of }'. Letting No" represent this reduced output set and renaming l to
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1" where 1" is the number of observer data points, then

After solving for Y from Eq. (4.1), recover F and use ERA to realize a state-space

model of the system (A, B, C', D "). Note that C" and D ' are only valid for No"

outputs and •A and B are assumed independent of the number of observations (outputs).

C' and /) may be recovered for the remaining outputs (/_) by the following algebraic

manipulations

y - [fi _B _B ... &'-_B]

u(O) u(1) u(2)

u(0) u(1)

u(0)

•.. u(t-D"

•.. u(/-2)

•.. u(t-3)
•.. :"

u(0)

or

where

y - fi u ÷_[8 AB

Y_,._t ffi

u(Z) u(2)...

u(O) u(1) ...

u(O) ...

%°

u(l-2)
u(l-3)

u(l-4)

u(0)

(4.2)
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u.. tBAB A' BI

0

[ulU"

u(0) u(l) u(2)...

u(0) u(l) ...

u(0) ...

".,

Eq. (4.2) can be solved for C and D from

u(l-2)]

u(l-3)

u(l-4)

|

u(0)

[b _] . y_" -- yDT(_5 -, (4.3)

It should be noted that the A matrix must be truncated after the eigendecomposifion

process to keep all 'system' frequencies and damping before evaluation of the _' and/_

matrices. This truncation can be done by transforming A and B into modal space

where _, is the matrix of eigenvectors of A.

eliminated in a consistent manner.

In this form computational modes can be

That is,ifthe Istrow and column of A isdeleted

Maintaining the same notation after model reductionthen the 1st row of B, is deleted.

we now want to transform A to real block diagonal form) s This is done to allow the

least squares process to work with real numbers. Let T be the similarity transformation

that makes A realsuch that
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As = TAT -i

then B. can be transformed to the real form by

B s = TB.

Eq. (4.2) can then be used again with A =A. and B=B s to get C and/). Note that it is

not necessary to perform the multiplication indicated in the U" expression. The columns

of U" can be recursively calculated from

U'(k+l) = AU'(k) + Bu(k) , k>O (4.4)

where U' (0),,0,_,. The globalC and D matricescan thenbe obtainedfrom

(C"

o.ro-.-]
L D_'M 1

In summary, the computational steps are

1) Select sensor subset No" and perform OKID-ERA

2)

3)

Transform A and B torealform

Calculate U; Eqs. (4.2) and (4.4)

4)

S)

Calculate/_and C fortheremainingoutputs;F-_I.(4.3)

Append D and C to C" T-' and D" ; Eqs. (4.5)

(4.5)
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V. CRITERIA FOR MODE SELECTIOI_I

5.1 Introduction

Spurious modes will appear since it is not possible to identify the correct model

order, which necessitates the use of mode indicators. A number of indicators are

available, including modal amplitude coherence 7, modal phase collinearity 7, consistent

mode indicator 15, extended mode amplitude coherence 15, mode singular value 16, mode

strength ratio _5, modal monophasicity coefficient roT,and frequency and damping

variance t6, to name a few. Only three indicators (mode singular value, modal

monophasicity coefficient, and modal amplitude coherence) are used in this study and are

discussed in sections 5.2, 5.3, and 5.4, respectively.

5.2 Mode Singular Value (msv) _6

The Markov Parameters in modal coordinate form are written as

(5.1)

where

Bm

l,, I

l'2!

I,,I

, c.

The vectors in Bm are 1 x Ni row vectors, C m contains No x 1 column vectors, and A

is a diagonal matrix of eigenvalues. Consider the first and second terms in Y.,

27



r.,. cj.. it,c_c.]

_bi °

I :

I

P:

i-I

l.I

From above, we can conclude that Y._

II

ffi_ c,X_-_b,
t.l

, k= 1,..., 1. Therefore Eq.

(5.1) can be rewritten as

The mode singular value is then defined as

._v.- Jl_.llb.I/<_-IX.I) , i= l,...,n

when 1 is sufficiently long. A larger msv means a higher contribution to the recovered

pulse response (Markov Parameters). For obvious reasons, the mode singular value

should be computed only for stable eigenvalues. When normalized by the maximum

singular value msv will range between 0 and 1.

5.3 Modal Monophasicity Coefficient (mmc)

The following development follows Ref. 17. The mmc begins with the idea of a

monophase mode. That is, a mode that has the same phase (within a multiple of 180 °)

at all output points. For example, each output will reach its respective maximum

displacement at the same time. Theoretically, all modes will be monophase if they are

normal. Practically, a mode will be monophase if the damping is light.
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Consider the identified mode shape matrix

Let the angle necessary to make _'k real be 0, so we have

_+ = _ e" , k= 1,...,n (5.2)

where 4,, is a real vector and i =_-. However, _k cannot be exactly real due to errors

in the identification of _ and the fact that _'k is not truly normal. But it is possible to

minimize the imaginary component in a mean square sense.

Let

where q is the number of outputs.

rk Iei°''

k = rk2ei°" '

rtqe i°.,

Therefore Eq. (5.2) becomes

It I el°'' I

• iO+,3 1

++ = rk2e p e+O,

r io,, I
k#e I

The problem can now be stated as follows:
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Find the angle 0k such that

1-1

k,= l,...,n

is minimized.

The necessary condition becomes _ = O, therefore

q

tan(2Ok)- ,
r2; (sin2(Ots) - cos2 (Otj))

J-I

k= l,...,n

but since %e je', - xts + lyts

q

2 xj.
tan(20k) = s-I , k= l,...,n

_(Yt/2 -Xt/2)

j-I

However, there will remain some imaginary components since we can only minimize Jk.

To measure this deviation calculateJk, i.e.,

J, = _.,(y,/+(x, s2-y,/)sin2(O,)+x,,y,,sin(2O,)) , k=l,...,n
j.I

Since (1_) k + (I_) k is invariant for any orthogonal transformation, we can define a

parameter which measures the degree of monophasicity, namely

Jk k= 1,...,n
mmc k = 1 - (i_), + (l_,)k '

q q

where (1,.,>+-- Ex_ and (!,), = Eyls.
1-1 S-I

The mmc ranges between 0 and 1, where unity

30



means a monophase mode and zero means a mode with no phase coherence.

5.4 Modal Amplitude Coherence (3,) 7

The following is taken from Ref. 7. The modal amplitude coherence is defined as

the coherence between the modal amplitude history and an ideal one formed by

extrapolating the initial value of the history to later points using the identified eigenvalue.

The modal amplitude obtained from the Hankel decomposition is

¢p-I rtl/2 ftr

u,, _, = [q,,q2,"',q,]"

where * denotescomplex conjugatetransposeand _,istheeigenvectormatrix. The

idealizedmodal amplitudehistoryisobtainedfrom

-" [b," ,', e"-'-,_','b,"]ql = ,e_t'A'")b..., , i= l,...,n

where strepresentsthecontinuouseigenvaluesand b_aretherows of thecontrolinput

matrix.The coherenceparameter(3')fortheithmode isdefinedas

3'I m

where I [ represents magnitude. If 3'i is unity, the approximate mode matches the

'exact' mode identified from the data; if it equals zero, the approximate mode is

orthogonal to the 'exact' mode. It should be mentioned that it is better to use the

extended mode amplitude coherence and/or consistent mode indicator since 3' does not

work very well.
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VI. ISSUES IN APPLICATION OF OKID-ERA

6.1 Introduction < :

Now that we have presented the OKID-ERA method, several questions are raised.

First, how many data points per unknown are required in the least squares solution for the

Observer Markov Parameters? Second, what is a proper p value? And last, what is an

appropriate size of the Hankel matrix? These questions can be answered by considering

the numerical example presented in section 6.2.

6.2 Role of parameters in OKID-ERA

To illustrate the behavior of the OKID-ERA method as p, l, and size of H(0) are

varied, results from a three-degree-of-freedom system (n=6) will be presented, s The

system is a single input/two output (SIMO) case with the following discrete model

A - dia_[_O.1628 0.9856J ' [-0.4305 0.8976J' [-0.5690o.8127J.]

B = [0.0011 0.0134 -0.0016 0.0072 0.0011 0.0034] r

C l

o 1 1,9
[.1.3093 0.0000 0.0000 0.0000 -1.3093 0.0000]

o:II
The displacement response of the system to a random input with standard deviation of 20

was generated and corrupted with process and measurement noise having the covariances
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Q - diag[O.0242 3.592 0.0534 1.034 0.0226 0.2279]x10 4

R ,, diag [2.785 2.785]x10 -2

The sample interval is 0.1 seconds. The natural frequencies are 0.261, 0.712, and 0.972

Hz with modal damping of 0.639, 1.01, and 1.30%. The resulting data sequences were

then analyzed by OKID-ERA.

The results are shown in Table 6.1 for varying number of data points per unknown

(l/(Ni .No)p ÷Ni), p values, and dimensions of the H(0) matrix. It is clear from Table

6.1 that the frequency and damping are poor when the p value is equal to the system

order (=6). This poor identification is expected since the Observer Markov Parameters,

17_, arc not zero for k>p when p is low due to the noise. When p is increased to 211

(=12), the results improve dramatically except the damping. However, notice that the

results have begun to stabilize when the number of columns of the Hankel matrix arc

greater than the number of rows. That is, the frequency and damping do not change

much when the number of columns equals two, three, or four times the number of rows.

The bias in the damping is largely removed when p is set to 5n (=30). Stability with

increasing Hankel matrix size is again evident. When the number of data points per

unknown is increased to four, the damping estimates for mode 1 improve for p=30 as

compared to two data points per unknown. As more data is included in the least squares

process for 17, the recovered Markov Parameters should be better identified.
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Table 6.1 Three-degree-of-freedom simulation results using the OKID-ERA method

H(0) MOde 1 Mode 2 Mode
Matrix

data per fret] damp freq damp freq damp

unknown p Row Col (Hz) (%) (Hz) (%) (Hz) (%)

12 12 ........ 0.829

24 ........ 0.850

6 36 ........ 0.855

48 ........ 0.856
i ,i,,q

12

3O

6

12

30

4

35.74

35.52

35.29

35.25

24 24 0.260 3.47 0.724 3.50 0.969 2.97

48 0.259 3.97 0.724 3.27 0.970 3.20

72 0.259 3.92 0.724 3.23 0.970 3.15

96 0.259 3.88 0.724 3.22 0.970 3.15
u

60 60 0.263 0.58 0.713 0.99 0.973

120 0.262 1.34 0.714 1.04 0.973

180 0.261 1.41 0.714 1.02 0.973

240 0.261 1.30 0.714 1.02 0.973

12 12 0.322 52.84 .... 0.906

24 0.312 46.55 .... 0.881

36 0.318 46.60 .... 0.875

48 0.319 46.60 .... 0.873

1.37

1.41

1.40

1.40

14.43

11.65

11.64

11.61

24 24 0.259 0.93 0.714 1.35 0.975 2.69

48 0.259 1.08 0.714 1.37 0.977 2.34

72 0.259 1.11 0.714 1.37 0.977 2.25

96 0.259 1.11 0.715 1.37 0.977 2.25

60 60 0.261 0.751 0.712 0.946 0.973 1.43

120 0.260 0.647 0.712 0.939 0.973 1.40

180 0.260 0.616 0.712 0.939 0.973 1.40

240 0.260 0.600 0.712 0.939 0.973 1.39

exact 0.261 0.639 0.712 1.01 0.972 1.30

-- indicates negative damping or unidentified mode
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To see this consider Figure 6.1. The Markov Parameters for p =30 are compared for two,

three, and four data points per unknown. It is clear that the Markov Parameters from

three and four data points per unknown are almost identicall _ While the Markov

o

parameters for two data points per unknown is different from the others, it contains the

essential characteristics, namely, proper phaseand frequency.

In summary, the following can be concluded:

1) Frequencies are identified first while damping is more difficult

2) The p value should be 4 or 5 times the number of modes

and Nop needs to be at least >n

3) A Hankel matrix size whose number of columns are twice the

number of rows give acceptable results. That is, it may not be

eomputationally feasible to use three or four times the number

of rows when model order is high or for a system with multiple

inputs and outputs

4) Two data points per unknown to determine _7 give acceptable results.
As stated in 3), it may not be feasible to use three or four data

points per unknown
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VII. SC-7 Test Structure

The test structure 5C-7, shown in Figure 7.1, represents an intermediate configuration

of the SSF. This structure is particularly important since it is the f'Lrst man tended

configuration.

Figure 7. i 5C-7 configuration of SSF

The mass properties of the model are shown in Table 7.1.
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Table 7.1 Masspropertiesof studyconfiguration

Center of

mass (in)

Mass

Moments

of Inertia

(Ib-sec2-in)

,, , ' ,,

261129

x -10.8

y 267.4

z 71.7

Ixx 237 x 106

lyy 41.1 X 106

Izz 246 X 106

Ixy 0.90 X 106

Ixz 0.46 X 106

lyz 26.7 X l0 6

The SC-7 model consists of 207 modes (including the six rigid body modes) between

0 and 5 Hz. Figure 7.2 displays the frequency distribution. Modal damping of 1% was

used for all modes. Of the 207 modes, only thirteen were selected as target modes II to

provide a guide for the MIE design. The selection criteria tS was as follows

1) All modes which could not be identified in a ground vibration test

were included

2) The first and second truss bending modes in the XY and YZ planes and

the first torsional mode were included

3) Use of the following indicators

a) Kinetic energy distribution

b) Kinetic energy maximum values and location

c) Percentage of kinetic energy in truss

d) Ratio of maximum truss deflection to maximum

deflection of whole structure

e) Engineering assessment using MSC/NASTRAN and

MATLAB truss mode shape plots
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Figure 7.2 SC-7 frequency distribution

The thirteen target modes are shown in Table 7.2. The SSF (and SC-7) will use the ACS

(Attitude Control System) and reboost thrusters for attitude control and reboost operations,

respectively. These thrusters are located on the two propulsion modules seen in Figure

7.1 (the two boxes near the PV arrays).

Acceleration responses were generated at 61 points on the structure (Figure 7.3) from

eight excitation locations (ACS thrusters only; Figure 7.4). Tables 7.3 and 7.4 list the

excitation and response grid points with their corresponding directions, respectively.
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Table 7.2

freq
Oiz)

0.5316749

0.5669868

0.7922026

O.1239532

0.8604512

1.133711

!.222703

i.367187

1.465167

1.502680

1.741080

2.029699

2.085652

The thirteen target modes

damp

1.00

1.00

1.00

i.00

1.00

1.00

1.00

1.00

I.(30

1.(30

!.00

1.00

1.00

Figure 7.3 SC-7 measurement grid points
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Figure 7.4

_) 232823

I

232822

$8

_ 232922

' U_b 232923

SC-7 excitation grid points

Table 7.3 Excitation locations (ACS thrusters) and directions

excitation

location

direction

,l= ,i ..... i

232822 (1) x

232822 (2) -x

232922 (3) x

232922 (4) -x

232823 (5) z

232923 (6) -z

232823 (7) -y

232923 (8) -y
, . ,

( ) identifies input no.
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Table 7.4

122O7(1)

122O7 (2)

122O7(3)

231010 (4)

231010 (5)

23 I040 (6)

231O4OO)

233010 (8)

233010 (9)

233040 (I0)

23304O (I I)

234010 (12)

234010 (13)

234040 (14)

234040 (15)

243040 (16)

245010 (17)

245010 (18)

245040 (19)

245040 (20)

257010(21)

257010(22)

257040(23)

23201O(24)

Measurement locations and directions; ( ) identifies output no.

direction meamre_ent dimctioa

X

Z

X

Z

X

Z

X

X

232010 (25) z

232040 (26) x

232040 (27) z

232922 (28)

232922 (29)

232922 (30)

location

243010 (31)

243010 (32)

248251 (33)

248251 (34)

248251 (35)

254010 (36)

254010 (37)

254040 (38)

26301O (39)

263010 (40)

263040 (41)

263O4O (42)

266010 (43)

266010 (44)

266040 (45)

298124 (46)

830021 (47)

831231 (48)
.,,

832235 (49)

84OO21 (50)

841231 (51)

842235 (52)

920845 (53)

400207 (54)

400207 (55)

400241 (56)

400241 (57)

400404 (58)

400404 (59)

40O407 (60)
i ,

400407 (61)

X

Z

X

y

Z

X

X

Z

X

Z

X

Z

Y

y

Z

Z

y

Z

Z

X

X

Z
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Vlll. MODELING OF INPUT FORCE

8.1 Excitation Design

This section was extracted from the work performed by McDonnell Douglas Space

Systems Company (Ref. 18). The objective of the input force is to provide the proper

excitation to the SC-7 structure so that the measured acceleration responses will be

sufficient to identify the thirteen target modes. In orbit, the excitations will be produced

by 'on-off' commands to the ACS and reboost thrusters. The ACS and reboost thrusters

produce a steady state thrust of 25 and 50 lbs, respectively, with a minimum on-off time

of 0.1 and 0.2 seconds. In this study, the ACS thrusters will have an on-off time of 0.2

seconds. However, because these thrusters operate as a blow down system they actually

have a variable thrust which ranges from 25 to 9 lbs and 55 to 30 lbs for the ACS and

reboost thrusters, respectively. The propulsion modules (which contain the thrusters)

therefore have to be replaced periodically. The MIE should then be performed soon after

replacement in order to make use of their full force capability (i.e., 25 lbs for ACS jets

and 50 lbs for reboost jets).

The excitations will be in the form of randomized pulses which are tailored to excite

the lower frequency modes during the earlier portion of the excitation pulse train and the

higher frequency modes during the later portion. This arrangement excites the higher

frequency modes just prior to the free-decay period, which typically decay quicker. Four

sets of linearly independent random forcing functions (RFF) were generated to enhance

the ability to identify closely spaced modes and are denoted herein as RFF1, RFF2, RFF3,

and RFF4.
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Each excitation (consisting of eight inputs) was designed such that it

1)
2)

3)

4)

does not continually excite a given frequency

maintains SSF within attitude and attitude rate

limits (less than five degrees and 0.02 degrees

per second, respectively)
does not exceed acceleration or load limits

provides a minimum modal response of one

hundred micro-g for the target modes

The excitations represent five cycles of the lowest important mode (0.532 Hz) with a

minimum of twenty seconds in order to provide an adequate number of pulses for exciting

the lower frequency modes. A typical simulated ACS excitation is shown in

Figure 8.1

60

5O

40

20

10

0
0

H

5 10 15 20

time (seconds)

25

Figure 8.1 Simulated ACS excitation for input 8 of RFFI
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8.2 Ramped vs Unramped Input

The unramped input shown in Figure 8.1 cannot be used in MSC_ASTRAN to

perform a transient analysis because of a warning against the use of discontinuous

excitations. A question then arises as how to model this type of input such that the

response from this new input will agree with the response from that which would have

been generated with the original input. The model also has to preserve the same

characteristics as the original input, namely, it must maintain SSF attitude and attitude

rate. A natural choice is to ramp the input m_ing sure to preserve the area under the

curve as shown in Figure 8.2.

3O

25

20

10

5

0
0

Tp

/

.......... /
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Figure 8.2 Ramped (dashed) and unramped (solid) input
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The next question is what rise and fall time to use. It is assumed that the rise and fall

times are the same and designated Tp. Tanner (private comm.) _9 showed that rise times

of 0.01 and 0.02 produced no significant acceleration response differences while 0.04

showed some difference. Tp was then selected as 0.02. The format for this ramped input

is as follows. If an 'on' command was given at 1.2 seconds, for example, the force

would be zero at 1.2 seconds and 25 lbs at 1.22 .seconds. With an 'off' command at 1.4

seconds, the same 0.02 seconds would be required before the force 'decayed' to zero, i.e.,

the force is 25 lbs at 1.4 seconds and zero at 1.42 seconds. To produce a 50 lb force the

rise time should be the same as the rise time for the 25 Ibs force since in this simulation

the 50 lbs force was produced from two nearly collocated 25 lb jets (see Figure 7.3).

A Power Spectral Analysis was performed to illustrate the behavior of this model (a

ramped input with Tp=O.02 for both 25 and 50 Ib forces) to the original input. Figure 8.3

shows the Power Spectral Density of this model and the original unramped input for the

first input sequence of RFFI. The solid line represents the original unramped (or square

wave) input and the dashed line is the ramped input. As can be seen, there is no

difference. This suggests that the ramped input and the original pulse input will excite

the same frequencies. The Power Spectral Densities for all sequences show similar results

and are given in Appendix C. This ramped input was subsequently used in

MSCjNASTRAN to perform a transient analysis. The integration step size was 0.02 for

the first 23 seconds (during the force inpu0 and 0.05 seconds thereafter (private comm.:

Martinovic)_.
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Figure 8.3 PSD of input Iforramped (dashed) and square wave (solid) input

8.3 Zero-Order Hold Input Models

While this new ramped input solved the integration problem, it presents another,

namely, how to represent a ramped input in a zero-order hold format. The reason for this

is that the input must be a zero-order hold since we are using the following discrete

system

x(k+l) = Ax(k) + Bu(k)

One approach is to disregard the rise and fall time and represent the ramped input as an
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unramped input (or in the other words, as the original pulse inpu0. Another approach is

to preserve the impulse (area) during one sampling interval. Table 8.1 shows the

numerical differences between these approaches assuming the force goes from 0 to 25 Ibs

on the rise and from 25 to 0 lbs on the fall.

Table 8.1. Non-impulse and impulse preserved inputs

time

(sec)

0.1

0.2

'0.3

0.4

0.5

0.6

0.7

zero-order hold input formats

model A model B

(impulse not preserved) (impulse preserved)

Force (lbs) Force (lbs)

0.0 0.0

25.0 22.5

25.0 25.0

25.0 25.0

25.0 25.0

0.0 2.5

0.0 0.0

The reason for the decrease in force for the second model is that the force is not 25 lbs

at 0.2 seconds bu't 25 lbs at 0.22 seconds. Both input formats were used separately in an

OKID-ERA analysis. Results will be shown with a p of 4, 1 of 568, and a Hankel

matrix size of 244 x 248. Table 8.2 compares the number of identified modes from both

models for RFFlc, RFF2c, and RFF4c. RFFIc, for example, refers to noise free (clean)

acceleration responses using the RFF1 input sequences. This designation will be used

throughout this study. Similarly, RFFln is polluted (noisy) acceleration responses using
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the RFF1 input sequences. Appendix I gives a discussion of the noise model. The

recovered modes are listed in Appendix D. These modes were selected (criterion 1) based

on 1) frequency error<l%, 2) damping error<20%, and 3) mac:ZO.9. The mac is the

normalized correlation coefficient between a recovered and an exact mode shape.

Table 8.2 Number of recovered modes for impulse

and non-impulse preserved

test case

RFF_

Num_r of modes

impulse non-impulse

preserved preserved

RIFle 36 37

RFF2c 37 36

36 36

There appears to be little benefit from using the impulse preserved input. In fact,

most of the frequencies are identified to at least two decimal places for both zero-order

hold models. Also, their Power Spectral Densities are similar as seen in Figure 8.4 for

input 1 of RFFI. The complete speclra for all test cases are given in Appendix E. The

non-impulse preserved input for this analysis can therefore be used as a zero-order hold

input in OKID.
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Figure 8.4 PSD of impulse (dashed) and non-impulse (solid) preserved input

8.4 'Exact' Thruster Input

The above analyses are not realistic in the sense that the actual input will neither be

ramped nor square wave. A typical thruster firing exhibits a rise and fall time where the

fall time will be longer than the rise time (private comm.: Popp) 2t. Also, there will be

fluctuations in the force once the force reaches it nominal operating state (i.e., 25 lbs for

the ACS jets). In addition, the force does not go to zero as soon as the thrusters are

turned off. Figure 8.5 shows a result from an actual ACS thruster ground calibration test

firing. 21
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Figure 8.5 Actu',d ACS thruster input

The horizontal axis plots time (0.05 seconds per block) and the vertical axis plots

chamber pressure (psia). The large peak represents the engine running rough with

spiking. Normally this spiking would not be seen. While Figure 8.5 represents pressure,

the thrust should be in proportion. Acceleration measurements from this input should be

obtained to determine if the different zero-order hold inputs (section 8.3) affect

identification accuracy. That is, the issue is whether the 'on-off times with a square

wave are a reasonable assumption or will the rise and fall time have to be modeled.

Before the integration could be performed, the actual thruster input had to be modeled.

Rise and fall times of 0.03 and 0.25 seconds, respectively, with a random fluctuation of

+3.7% of the force at steady state were calculated from Figure 8.5. The fall time here

is taken as the time it takes to fall to 1% of the steady state force.

Several models were investigated to represent the rise and fall time. They were the
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polynomials,exponentials,andhyperbolictangents.Thepolynomials(n>O;n-order) and

exponentials were rejected on the rise because they did not adequately model the rounding

of the top left comer of the pulse in Figure 8.5. The hyperbolic tangents and exponentials

were rejected on the fall because no rounding was seen at the top right comer of the pulse

in Figure 8.5 and they did not exhibit the 'right amount of decay'. The hyperbolic

tangent and the polynomial (n<0) were finally selected to model the rise and fall,

respectively. Again, the reason for having to model the thrust is that it will not be

measured.

During the rise the force was modeled by a hyperbolic tangent function of the form

F(t) - A tanhc_(t-to)+B

where

to-t+m
2

or-- 150

The fall was modeled using an inverse square power law of the following form

C
F(t) =

(t - to# + 8) 2

A,B and C, 8 are determined from the initial conditions (i.e., to., F ! and to-+T,_,,, F 2

and tq0,, F s and tq0,+Tfa _, F 4, respectively). Table 8.3 compares selected values of this

input model to actual data. As seen, the model agrees quite well with experiment.

52



Table 8.3. Input model vs experimental data

rise

fall

time (sec)

experiment

Force (lbs)

model

Force (lbs)

0.00 0.00 0.00

0.01 4.63 4.38

0.02 20.37 20.62

25.00

25.00

0.03

0.30

0.31 13.90

0.32 8.30

0.33 4.60

0.40 0.93

25.00

25.00

13.52

8.50

5.80

1.18

0.46 0.46 0.55

A transient analysis in MATLAB, a matrix manipulation program, was performed

with this input using a constant step size 4th-order Runge-Kutta routine. The 'on-off'

commands were obtained from RFF1. The integration step size was 0.002. Note that the

input had a random error of + 3.7% of the force at steady state. An OKID-ERA analysis

was performed on the clean data using both an impulse and a non-impulse preserved

input. Since it is not possible to have an exact representation of the input, an input with

no random error was used as the idealized input. The impulse preserved input was

obtained from the idealized input and the non-impulse preserved input was the same as

model 1 as discussed in section 8.2. The area for the impulse preserved input was

calculated with the trapezoidal rule. To do this, data was generated every 0.0005 seconds
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using the thruster model above and the area was summed every 0.1 seconds. Power

Spectral Densities were compared for both these inputs. Figure 8.6 depicts the spectra

for input 1 of RFFI.

RFF1 - input 1

105 1 t 1----- _ , ----r .... !

i04_

I 103

102

t i I I

1010 0_5 i 1; 2 2.5 3 3.5 4 415 '

frequency (Hz)

Figure 8.6 PSD of impulse (dashed) and non-impulse (solid) preserved input

The results for all forcing functions are given in Appendix F. It is seen that the impulse

preserved input shows no significant difference in spectral content to the non-impulse

preserved input. We therefore expect that both inputs will perform equally well in the

identification process as was seen in section 8.2. However, these two. inputs are different:

since the non-impulse preserved input will have a zero force when the impulse preserved



input will not. Using the non-impulse preserved input in the identification process

assumes that the data will be in free-decay beyond twenty seconds when it is known that,

initially, there will be no free-decay region as soon as the thruster is turned off. Rather,

a few seconds (1 or 2) should pass before the data can be considered free-decay.

Appendix G lists the recovered modes using criterion 1 (section 8.3) for p=5, i -706 and

a Hankel matrix size of 305 x 616. As shown in the appendix, while the impulse and
4

non-impulse preserved inputs identified different frequencies (attributed to the difference

in power spectra), most of the modes are similar to at least one decimal place. Overall,

43 modes were recovered from the non-impulse preserved input and 42 for the impulse

preserved input and because all the impulse preserved spectra are similar to the non-

impulse preserved spectra, it can be concluded that there is no need to preserve the

impulse and subsequently the 'on-off' commands can be used to produce square wave

inputs for the purpose of system identification.
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IX. RESULTS

9.1 Independent Measurement Selection

It has already been mentioned that independent inputs and measurements are required

to minimize the numerical ill-conditioning of the pseudoinverse of the V matrix. To

evaluate the independence, an SVD was performed on the inputs and outputs. As seen

in Figure 9.1, the eight inputs are indeed independent since the maximum condition

number for RFF1, RFF2, and RFF4 is 1.82. The outputs, however, are not independent

as shown in Figure 9.2. That is, the noisy data deviates from the clean data somewhere

around 30 outputs, which suggests that the noise dominates beyond at least 40 outputs.

The reason why we say all the measurements are not independent is as follows. The rank

of the measurement matrix does not change very much past, say, the 40th singular value.

This would suggest that only 40 outputs are independent and the remaining 21 outputs

are dependent. RFF1, RFF2, RFF3, RFF4, and RFFI were concatenated in that order to

generate an input sequence with a forcing time of 100 seconds. The reason for this will

be explained later. This measurement set is called RFFI234n and has outputs which are

not independent, as shown in Figure 9.3. The change in slope of the singular values

suggest that at most 37 outputs are independent for all test cases.

The question, then, is how to select the independent measurements. The Gram-

Schmidt Orthogonalization procedure is used for this purpose. That is, a measurement

matrix (outputs listed row wise) was formed and the output with the minimum correlation

with the other outputs is used as an initial reference (first output) to start the method. A

new measurement matrix (consisting of 60 outputs) was formed after removal of the
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minimum correlated output. The Gram-Schmidt procedure was performed (e.g., removal

of all dependent components of the 60 outputs from the first output) and another

measurement matrix was obtained. The second output then is the maximum magnitude

squared (obtained row wise) of this new measurement matrix. This output is removed

from the new measurement matrix, all dependent components of the remaining 59 outputs

are then removed from the second output, and the third output is the maximum magnitude

squared. This procedure is continued for all the outputs. Figures 9.4 and 9.5 plots the

output magnitudes. Appendix H lists the ranking of the outputs based on magnitude

squared (normalized by the maximum). A range of output cut-offs in the 30's is seen for

RFFIn, RFF2n, RFF4n, and RFFI234n, which suggests that those are the only

independent measurements.
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Figure 9. ! Singular value distribution for the eight inputs

57



lip

10-1

lO.Z

10'_

104
0

:"]k ' ' " ' • •

- IU_in

o

"'_'_,

":',%,
• :\o

e ° ** , • •

a

,_peu

70

Figure 9.2 Singular value distribution for the outputs

I0O

IO t

i 10-=

I0_

10 4
0

o RFF1234c

RFFI234n

e

I0 20 3O 50 60

oetpm

7O

Figure 9.3 Singular value distribution for the outputs

S8



RFFIn

oulputs

70

10-1

Figure 9.4

,o 2'o _ ,_ s'o _o

outputs

Output magnitudes from Gram-Schmidt for RFFIn and RFF2n

7O

59



lO-I
RFF4n

10-so 1o _o _ _ io _ 70
oulpu[s

I0o

[0-1

U
10-2

10"3

10 4

lO-S
0

Figure 9.3

v .

' 2'o ' ' 57I0 30 40

ou[puLs

7O

Output magnitudes from Gram-Schmidt forRFF4n and RFF1234n

60



9.2 Variation of Recovered Modes with Number of Outputs

We should investigate the role of the number of outputs in OKID. Figure 9.6 is a plot

of the total number of recovered modes versus the number of outputs used in OKID based

on a full rank solution of the Hankel matrix decomposition using RFF1234n. The data

length was set at two data points per unknown and p was obtained from floor( 492 "_.
tNo+8)

100_ w T v v

9O

80
modal indicators

70
6 • • *

! " .
6O

I IL '
10

O0 I0 30 4O 6O 70

number of outputs

Figure 9.6 Number of recoveredmodes

Floor is a MATLAB command that roundsto the nearest integer towards minus infinity.

The number 492 was obtained by subtracting eight (the number of inputs) from half of
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1000(1000 beingthe forceddatalength). The first criterion is criterion 1 (section 8.3).

The second criterion (criterion 2), which is less restrictive, identifies all modes with

frequency error<l%, damping error._40%, and mac,'0.8. In either case, ten to thirty

outputs appear to recover the most modes. Notice that although results are presented for

40, 50, and 61 outputs, they represent increasing dependence (i.e., have no new

information) and should be avoided since they may cause numerical ill-conditioning. In

addition, p decreases as No increases and we expect a poor solution for the Markov

Parameters and consequently less or poor mode recovery.

We now discuss the (*) points in Figure 9.6. The above analysis used the known

answers. A more objective analysis is to truncate the singular values (e.g., to less than

a full rank solution) and use the modal indicators. When the observed order is plotted

versus the number of outputs (Figure 9.7), one sees the order stabilizing by 10 outputs.

Figure 9.7, therefore, suggests that there are only 100 modes in the data. The decrease

in order past 30 outputs is probably, again, due to the measurement dependence. The

singular value distribution of H(0) for 30 outputs is shown in Figure 9.8. The (*) in

Figure 9.8 indicates the location where truncation was performed. This is how the data

in Figure 9.7 was obtained. The rest of the outputs have similar distributions. The points

(*) in Figure 9.6 show the number of recovered modes from the modal indicators after

singular value truncation based on the order given in Figure 9.7. The optimum numbers

are in a range from ten to forty, which is similar to what was obtained with criteria 1 and

2. The difference can be attributed to computational modes that survived the indicator

criteria (monoL>0.98 or monoL_.9 and msvL>0.02). This is possible since a mode could
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be monophase but yet not be a true mode.
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Figure 9.7 Observed order from SVD of H(0) versus
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All the criteria, however,show the sameresult. That is, there appearsto be an

optimum numberof outputswhich gives the bestresults. The reasonfor this can be

explained as follows. It is known that for noisy data: (1) (No)p>n and (2) p must be

large. If more outputs are used for a fixed data length, then p will decrease. This will

satisfy (1) but not (2). If few outputs are used then (2) is satisfied but not (1). There

will therefore be a point where both (1) and (2) are optimally satisfied.

9.3 Global.Local OKID Validation

Now that we have established an optimum number of outputs, let us discuss the

Global-Local method. Mode shape information will be lost at the other locations if one

uses only the independent outputs in OKID. However, there are numerous methods that

can be used to solve this dilemma. One approach discussed in this section and already

mentioned in section 5 is Global-Local OKID. The remaining methods will be discussed

in section 9.5.

There are two natural ways to solve for the D and C matrices in GLOKID. Section

5 presented one method (call it the appending method). Simply put, this method uses the

identified D and C matrices from OKID, i.e., DoxiD and Corao, and appends them to the

D and C from the least squares solution for the remaining sensors (the sensors that were

not used in OKID). The global D and C matrices then become
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Another method (call it the entire method) is to use the entire data set to recover D and

C for all the sensors. Obviously, the appending method is computationally more efficient

than the entire method. However, to determine which method produces better results,

consider the case of No=37 , p=ll, and 1=1006 on RFF1234n.

Table 9.1 presents the results using both methods. The modes were selected using

criterion 1. The fourth column lists the mac for the local mode shapes (No=37). The

fifth and sixth columns list the mac using the entire and appending methods. There is a

significant improvement in mode shape accuracy of the appending method over the entire

method. To visualize this, Figure 9.9 shows the (*) points (appending method) above the

solid line (entire method). The (o) points will be discussed later.
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Table 9.1 Comparison of methods for determining global mode shapes using GLOKID

damp freq
(%) (m)

1.0069 0.5670

1.0660 0.7455

ex-freq
(Hz)

0.5670

0.7458

0.9997 0.7926 0.7922

1.1246 0.8060 0.8079

1.0252 0.8239 0.8240

1.0089

0.9913

0.9905

mac

(local)

0.9992

0.9957

0.9943

1.0000

0.9941

0.8604 0.8605 0.9346 0.9328

0.8966 0.8967 0.9142 0.7463

1.1338 0.9999 0.9990

0.9947 1.2228

1.0096 1.2553

_9862 1.3673

1.0176 1.4651

1.0087 1.5028

1.1337

1.2227 1.0000

1.2552 1.0000

1.0438 1.3220 1.3231 0.9999

0.99961.3672

1.4652

0.9629 1.6772

1.5027

1.6781

1.1413 1.7409

1.0791

0.9729

!.0021

1.0029

1.0055 2.8141

1.0066 2.9891

1.7411

0.9976

2.5888

0.9996

0.9487

0.9125

2.2319 2.2330 0.9886

2.2508 2.2515 0.9360

2.5889 2.5888 0.9999

2.5889

2.8142

2.9887

0.9999

0.9999

0.9999

1.0009 3.1234 3.1225 0.9993

1.0578 3.2775 3.2788 0.9988

Entire Appending Entire
method method method-

exact

mac mac mac

(glob_) (glob_) (glob_)

0.9840 0.9916 0.9836

0.9470 _9931 0.9562

0.9115 0.9753 0.9442

0.9858 _9949 0.9859

0.9909 0.9927 0.9947

0.9496 0.9608

0.9998

0.9997

0.9765

0.9814

0.6700

0.9921

0.8043

0.7082

0.7784

0.4572

0.9977

0.9977

0.9856

0.9560

0.5402

0.6529

0.8986 0.7517

0.9998 0.9991

0.9999 0.9998

0.9999 0.9997

0.9961 0.9781

0.9981 0.9820

0.6660

0.9925

0.8170

0.6815

0.8056

0.9831

0.9994

0.9374

0.9155

0.8814

0.8850

0.9996

0.9996

0.9980

0.9890

0.9289

0.7449

0.4572

0.9976

0.9976

0.9860

0.9533

0.5466

0.6766

66



Table 9.1-Continued

1.0144

0.9780

1.1389

1.1360

3.4731

3.5206

3.6164

3.4725

3.5206

3.6180

0.9912

0.9957

0.9978

0.6971

0.5910

0.9653

0.9954

0.9200

0.9540

0.9794

0.6822

0.5546

0.9668

3.8007 3.8091 0.9984 0.9892 0.9953 0.9887

1.0946 4.4040 4.3812 0.9850 0.9555 0.9013 0.9686

1.1000 4.4502 4.4531 0.9980 0.5174 0.9660 0.8096

0.8726 0.9223 0.89001.0807 4.66094.6564

0.9

0.8

t 0.7

0.6

0.5

37 outputs in OKID

%'.5 i ?.5 _ 2'5
frequency(Hz)

Figure 9.9 Global mode shape determination using GLOKID
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An explanation is as follows. Since the mode shape matrix for the sensor subset in OKID

was well identified (fourth column), the global mode shapes from the appending method

should then be well identified. Notice that these mode shapes are generally of lesser

quality than the local mode shapes. There are two possible reasons for this degradation.

The first is that the recovered frequency and damping values are not exact and have

subsequently affected the least squares process. Since the entire method determines

global mode shapes solely from that recovered set, it may be expected to have poor

estimates. The f'u'st explanation is highly suspicious because the recovered frequencies

are within 1% and damping estimates are within 20% of their true values. The second

potential reason is that the number of recovered frequencies are more important rather

than the errors in frequency and damping (i.e., since not all system frequencies are

recovered).

To see which explanation is valid, the identified frequencies and damping values were

replaced with their corresponding exact values and the entire method used (call this

method the entire-set exact). If the mac's are similar to the previous entire method's mac

then the second reason is more plausible. Since the mode shapes in the last column of

Table 9.1 are similar to the fifth column, we conclude that the number of recovered

frequency and damping values is more important. This is not to say that the quality of

the recovered frequency and damping is unimportant. Figure 9.9 shows the (o) points

(entire set-exact) closely matching the solid line (entire set) but, in general, the (o) points

are above the solid line.

Now, it may be argued that the degradation in mode shape will not be as severe if
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the number of outputs used to extrapolate the mode shape (No_) is less than the number

of outputs used in OKID (the sensor subset), i.e., Noorao>Nou_. To see if this is valid

consider two analyses. The first uses the 20 optimum number of outputs with p--18. The

second uses 37 outputs (determined to be the optimal number of independent outputs)

with p,,11. Both cases used only the forced response (l_-1040). After selection by the

modal indicators all modes with frequency error<l% and mac_>0.8 were kept, as shown

in Table 9.2. Figures 9.10 and 9.11 show the mac and damping estimates as a function

of frequency, respectively. There does not appear to be any significant difference

between the two in terms of mode shape identification. However, the damping estimates

for the 20 outputs are better than that for the 37 outputs, as shown in Figure 9.11. To

verify this claim, the RMS of the damping for the 20 outputs is 1.1061 while the RMS

for the 37 outputs is 1.2871. The better damping values is due to the higher p value.
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Table 9.2

w ....

37 outputs

damp

(%)

3.2116

1.0323

1.0188

1.0209

1.1618

1.1446

1.1301

0.9885

1.4170

0.9845

1.0118

1.1509

1.0162

1.0245

1.0118

1.3234

Modal parameters for 20 and 37 outputs from GLOKID

1.4358

1.0111

0.9748

freq

(Hz)

0.1830

0.5671

0.7455

0.7933

0.8058

0.8230

1.0027

1.1338

1.1999

1.2228

1.2553

1.3225

1.3673

1.4651

1.5027

mac

0.8813

0.9995

0.9892

0.9762

0.9970

0.9964

0.9722

0.9999

0.9976

1.0020

1.0000

0.9997

0.9995

0.9951

0.9996

0.99901,6040

0.9440 1.6775 0.9543

1.1043 2.0337 0.9839
J,,

2.0995 0.9752

2.2340

2.2510

2.35961.0283

2.9910

1.0038

0.9755

0.9434

0.9969

0.9310

0.9999

2.4762

2.5889

20 outputs

damp frcq

(%) (Hz)

1.7939 0.1831

1.0289 0.5671

1.OO94 0.7459

1.0015 0.7929

1.1171 0,8097

1.0170 0.8243

0.9931 1.0029

0.9874 I.1336

1.2187 1.1956

0.9912 1.2227

1.0074 1.2555

1.2453 1.3233

0.9597 1.3678

1.0041 1,4653

0.9993 1.5O29

0.9645 1,5982

1.0708 1.6773

1.3024 2.0336
,7,

1.6590 2.1117

0.9874 2.2327

0.9973 2.2502

1.0045 2.3595

I.I048 2.4871

1.0036 2.5889

exact

freq

(I-Iz)

0.1815

0.5670

mac

0.9099

0.9991

0.9747 0.7458

0.9380 0.7922

0.9964 0.8079

0.9709 0.8240

0.9430 1.0033

0.9999 1.1337

0.9926 1.1954

1.0000 1.2227

1.0000 1.2552

0.9992 1.3231

0.9982 1.3672

0.9904 1.4652

0.9990 1.5027

0.9992 1.6017

0.9672 1.6781

0.9838 2.0297

0.9119 2.0956

0.9466 2.2330

0.9345 2.2515

0.9955 2.3591

0.9627 2.4849

0.9999 2.5888
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Table 9.2-Continu_!

1.0828

1.0042 2.8142 2.8141 0.9990

1.0167 2.9891 2.9889 0.9976 2.9887

1.OOOO 3.1233 3.1228 0.9803 3.1225

1.0534 3.2777 3.2783 0.9258 3.2788

1.0148 3.4735 3.4739 0.9838 3.4725

0.9771 3.5209 3.5206 0.9842 3.5206

1.0884 3.6166 3.6166 0.9887 3.6180

1.0302 3.8048 3.8029 0.9878 3.8091

1.2540 3.9602 3.9473 0.8335 3.9236

1.1961 4.0411 4.0429 0.9377 4.0308

1.4773 4.3264 4.3199 0.9751 4.3193

1.1393 4.4068 4.3954 0.9055 4.3812

1.0935 4.4506 4.4503 0.9835 4.4531

0.9754 4.66094.6571

0.9994 1.0033
H ,1,,

0.9987 1.0043

0.9891 1.0189

0.9320 0.9992

0.9843 1.0025

0.9890 0.9716

0.9911 1.0818

0.9923 1.2296

0.8213 0.9609

0.9218 1.2354

0.9774 1.4070

0.8687 0.9099

0.9695 I.1245

0.9576 1.0247 4.6621
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Figure 9.10 Global mode shapes for 20 and 37 outputs
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Figure 9.11 Damping estimates for 20 and 37 outputs

9.4 Results for Noisy Measurements (RFFI, RFF2, RFF4)

We now investigate the individual test cases, i.e., RFFln, RFF2n, and RFF4n, for the

total number of recovered modes. RFF3n will not be used due to an error in the input

sequence which invalidated the NASTRAN transient analysis. To compare results, the

ERA method using free-decay data was used. While the ERA parameters were not

optimized they were set to what was deemed reasonable given the computational

limitations and data length. The modal indicators for the ERA consisted of the modal

amplitude coherence (7>0.8) in addition to the other two indicators. Table 9.3 presents
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results for 20 outputs using OKID-ERA with 60 and 80 seconds and for ERA using 60

seconds. The Hankel matrix size in ERA was 300 x 600. Observe that the ERA

generally does better than OKID-ERA (60 seconds) in terms of total and target modes,

while OKID-ERA (80 seconds) does somewhat better than ERA in terms of total modes.

This is expected since a larger p can be chosen making the Markov Parameters more

exact. Also, it is clearly seen that ERA recovered more target modes than either the 60

or 80 second OKID-ERA. It should be pointed out that for RFFln, for example, 8 target

modes were recovered (from criterion 2). The only reason that a five is shown for

criterion 1 is that only five modes satisfied criterion 1. For this analysis, the principal

difference between criteria is that the first selects all modes with damping error._20% and

the second with damping error.q,40%.

Table 9.3 Number of recovered modes (based on local mode shapes)

, , , ,, ........... , ,,

RFF4n

Number of modes

OKID-ERA ERA

60 sec. 80 sec. 60 sec.

test Total Target Total Target
cases modes modes modes modes

crit. i 14 6 19 9

RFFIn
criL 2 24 7 22 10

criL 1 18 6 18 8

RFF2n
crit. 2 26 8 22 10

cfit. 1 21 9 18 9

24 9 2O 9crit. 2

Total Target
modes modes

15 5

21 8

17 7

22 8

14 6

18 7
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Observe also that for RFFIn and RFF2n of criteria 2 and 1, respectively, the number of

target modes decrease with an increase in data length which is contrary to the general

idea that the longer the data record the better the answers. Although more modes were

identified, it was at the expense of losing other modes (in this case a target mode). A

possible explanation is that, in this case, more data means more free decay and hence

more zeros in the V matrix, which may 'weaken' the effect of the forced data and also

produce a poorly conditioned V matrix. This conditioning problem can be seen in the

singular values of the V matrix in Figure 9.12.

10o

10-1

10-3
0 10

Figure 9.12

- 1000

-- 1500

*2000

03000

x4000

20 30 40 50 60 70 80 90 10

singular value number

Singular valucs of V matrix for three-degree-of-freedom
simulation _=: _ :-=
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The data was generated from the three-degree-of-freedom simulation discussed in section

6. The rank of the V matrix is 37. The reason for this is as follows. The row dimension

of V is (No +Ni)p +Ni -- (No)p +Ni(p+l). Since we have a three mode system (n-6)

and if the data is clean (noise free), then (No)p -'-n. And for p'-30, Nil 1, and n--6 the

rank of V should be 37. Two percent random noise (based on maximum amplitude) was

added to the clean data. The data consisted of ten seconds of forcing and was randomly

generated (unit variance and zero mean). Observe that as the data length in the V matrix

is increased, the singular values show less of a drop at the 37th singular value making it

more difficult to determine the rank. A long forced response followed by a short free-

decay may do better. This was another reason for generating RFF1234n, whose results

will be presented later.

The above results considered a limited number of outputs (and consequently used

local mode shapes). Table 9.4 presents results for Global-Local OKID. Sixty seconds

of data were used to identify the frequency and damping and local mode shapes and

eighty seconds for the least squares solution for the remaining mode shapes. Two points

are immediately obvious. The first is the relatively poor performance of the ERA method

using all 61 outputs (Hankel matrix size of 244 x 600). This can be explained as follows.

Due to a limited amount of data (60 seconds), ERA has only r block rows in the Hankel

matrix. By using outputs that are not all independent there is a waste of r values. The

ERA method with Keydata _5is then one solution since the independent outputs can be put

to better use in the block row repetitions. Also, global mode shape information is not
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lost. The other point is that GLOKID is identifying more modes for RFFln and RFF2n

for criterion 2 than OKID from Table 9.3. The reason is that while, as stated previously,

the mode shapes from GLOKID are generally of lesser quality, it does not mean that all

mode shapes will be of lesser quality.

It is appropriate now to discuss the results obtained using an increased forced data

length followed by free-decay (i.e., RFF1234n). The forced data may help separate

closely spaced modes while the free-decay may help in identifying low frequency modes.

A measurement of this type may, therefore, be a good approach. But a similar response

can also be produced by concatenating the responses from the individual input sequences

(i.e., RFFln, RFF2n, and RFF4n). This would have a mixture of forced and free-decay

data throughout the entire data length. Each of the individual input sequences provided

50 seconds for concatenation.

Table 9.4

i a,

Number of recovered modes (based on global mode shapes)

,,

Number of modes

GLOKID-ERA ERA

60 sec. 60 sec.

test Total Target Total
cases modes modes modes

criterion 1 15 5 6

RFFIn
criterion 2 22 8 7

criterion i 15 6 7

RFF2n
criterion 2 23 9 11

criterion 1 14 6 7

18 7 8criterion 2
i
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Results ate presented for 150 seconds using 20 outputs and are shown in Table 9.5. The

Hankel matrix size was 520 x 1040 with p=26. The ERA method was also used with

a Hankel matrix size of 600 x 1500 with the data coming from concatenation of 50

seconds of free-decay data from each of the individual input sequences.

Table 9.5

criterion 1

criterion 2

Number of modes for 150 seconds (based on local mode shapes)

Num_r of modes

OKID-ERA

Concatenating RFF1234n

ERA

Concatenating

Total
modes

35

49

Target
modes

10

11

Total
modes

41

47

Target
modes

12

12

Total
modes

28

33

Target
modes

9

10

It is obvious that RFF1234n did better than concatenation and ERA. Also, almost all of

the target modes were identified (0.532 Hz was the only missing target mode, primarily

because of its poor mode shape; in fact, this mode was not identified in Tables 9,3 and

9.4). This missing target mode is probably due to using only 20 outputs or the high

modal density. Table 9.6 presents the lowest frequencies from RFF1234n and

concatenating RFFIn, RFF2n, and RFF4n for OKID-ERA.
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Table 9.6 Lowest frequencies from RFF1234n and concatenation

• J

damping

(%)

3.4198

RFF1234n 1.6929

3.1632

ConcatenationJ 4.1143 [

frequency

(Hz)

0.1527

0.1827

0.2680

0.2892 [

exact-freq.

(Hz)

0.1511 0.9599

0.1815 0.9535

0.2767

0.3106

Observe that while the damping is poor, the frequencies and mode shape are excellent for

RFF1234n. This would suggest that a long forced data length followed by free-decay

data may give the 'best' answers although there is probably not much that can be done

about the damping except possibly to increase the data length and/or filter the data.

Filtering the data may help in identifying more of the low frequency modes.

9.5 Methods for Global Mode Shape Recovery ..........

GLOKID is one method for obtaining global mode shapes. Another method is to use

subset combinations with OKID and then use ERA with Keydata. That is, we remove the

20 most independent outputs from the data (after first use of Gram-Schmidt) and perform

another Gram-Schmidt on this new data, which contains 41 outputs. Select a new set of

20 independent outputs which comprise a second set of data. This leaves only 21 outputs

as the final data set. An OKID analysis can then be performed three times (i.e., using the

first 20 outputs, then the next 20, and finally the last 21) to obtain three sets of Markov

Parameters. These Markov Parameters can be used in ERA with Keydata where the In'st

set of Markov Parameters are used in the block row repetitions. A disadvantage of this
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method is that there will be three different frequency and damping estimates, which will

cause a phase distortion in the Hankel matrix.

To compare these two:methods, concatenate 60 seconds from each of the individual

input sequences to get a data length of 1800. The parameters in GLOKID (41 outputs)

consisted of p-31 and 20 outputs (of the most independent) with 1800 points in the mode

shape least squares process for the other 41 outputs. The subset combination method used

a p-31 for the first two OKID runs (each using 20 outputs) and 30 for the last (using 21

outputs). The Hankel matrix size in ERA with Keydata was 601 x 1200 while GLOKID

(41 outputs) used 620 x 1240. It is seen in Table 9.7 that the subset combination method

does better than GLOKID (41 outputs) in terms of total mode recovery. A possible

explanation for this is that in the subset method each Markov Parameter set should have

good mode shapes since each came from OKID. GLOKID (41 outputs), on the other

hand, has only one set of Markov Parameters coming from OKID. The mode shapes at

the remaining outputs must then be extrapolated using the recovered frequency and

damping. And as discussed in section 9.3, there will be a global mode shape degradation.

The last OKID analysis for the subset method (21 outputs) does have dependent

measurements and therefore the analysis may suffer from ill-conditioning. Two methods

which overcome this problem are presented. The first method (subset with SVD) uses

the identified Markov Parameter set from the two OKID analyses (20 and 20 outputs) and

analyzes the remaining 21 outputs with the SVD of the V matrix (due to computer

memory limitations the SVD was performed on VVr). Then the ERA with Keydata was

used on the three sets of Markov Parameters. The second method (GLOK1D (21 outputs))
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Table9.7

crit. I

crit. 2

Global mode shape recovery methods using concatenated data (1800 points)

Number of .mode_

GLOKID Subset Subset GLOKID
(41 outputs) Combination with SVD (21 outputs)

Total

modes

35

44

Target
modes

11

12

Total

modes

4O

49

Target
modes

I0

11

Total
modes

33

40

Target
modes

9

10
i i

Total
modes

37

44

Target
modes

12

12

is an extension of the Global-Local concept. That is, instead of extrapolating the mode

shapes to 41 outputs, ERA with Keydata is used on the first two Markov Parameters (20

and 20 outputs) to determine frequency and damping estimates. The mode shapes are

then extrapolated to the remaining 21 outputs. Surprisingly, the subset combination

method gives the best results although GLOKID (21 outputs) identifies the most target

modes. A possible explanation why the subset with SVD did the worst out of all the

methods is because the SVD was performed on VV r instead of V. It should also be

pointed out that the subset with SVD is the most computationally intensive due to the

need for another SVD followed by the subset combination method (since two extra OKID

analyses have to be performed) then GLOKID (21 outputs) and finally, the least

expensive, GLOKID (41 outputs).
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9.6 Observer Decay vs Data Length and Hankel Matrix Size

To verify the results presented in section 6.2, let us investigate the number of data

per unknown in the least squares solution for the Observer Markov Parameters. Consider

the case where 60 seconds from RFFln, RFF2n, and RFF4n are concatenated (i.e., data

length of 1800) with the first 20 independent outputs and a Hankel matrix size of 1 to 2

(twice as long as it is tall). Table 9.8 presents results using criteria 1 and 2. Observe that

as the number of data per unknown is increased, less modes are recovered. This is

expected since p and consequently (No)p decrease. Also note that two data points per

unknown give the 'best' results. Although the highest p value is obtained from 1.5 data

per unknown, it gives less modes than two data per unknown primarily because there is

less data averaging. This suggests that two data per unknown does give the optimum for

a fixed data length.

As a final note, let us re-examine the role of the Hankel matrix size. For this

purpose we use RFF1234n with pffil8 and /=1040 (both fixed). All test cases retained

200 singular values in the Hankel matrix and are presented in Table 9.9. A Hankel

matrix size of 1 to 3 appears to give the most number of modes. Certainly, the minimum

size is 1 to 2. The actual size, however, depends on the available computational resources

and particular problem (i.e., system order).
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Table 9.8

.i J

data per
unknown

1.5

2

3

4

5

Total number of recovered modes using OKID-E_

Number of modes

criterion 1 criterion 2

29 39

38 49

35 42

25 36

13 23

Table 9.9 Hankel matrix size in OKID-ERA

H(0)

Rows Cols

Number of modes

criterion 1 criterion 2

360 36O 31 36

720 31 40

1080 35 43

1440 35 43
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X. CONCLUSIONS

It has been shown that an optimum number of outputs exist in OKID which give the

best results in terms of modal recovery (frequency and damping estimates). This is due

to the fact that for a fixed data length there is a point where the values p and (No)p are

both optimal. In addition, not all of the noisy measurements were found to be

independent. This is important since OKID requires the measurements to be as linearly

independent as possible to minimize any numerical ill-conditioning. Therefore, an

independent output subset was obtained from a Gram-Schmidt Orthogonalization

procedure. For the SC-7 simulation, 20 out of the 61 outputs were selected as this

subset. However, mode shape information was lost at the remaining 41 measurement

locations. To overcome this difficulty, a new version of OKID, called Global-Local

OKID (GLOKID), was developed. This new method uses the identified frequency and

damping from OKID using an independent output subset and determines the local mode

shapes for the remaining outputs (i.e., the outputs that were not used in OKID) using a

least squares process. The global mode shapes are then obtained by appending the

identified local mode shape from the least squares process to the other set of local mode

shapes determined from OKID. GLOKID is shown to identify the global modal

parameters.

In addition, there were several issues in the use of OKID. The first was the number

of data points per unknown in the solution for the Observer Markov Parameters. Two

data points per unknown was found to give adequate results for the noise level in the SC-

7 simulation. Obviously, if the noise level were much higher than more data points per
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unknown are required. Another issue was the accuracy of the input force on the

identification process since the forces on the SSF will not be measured. Two models

were used to test the accuracy. The first model was a square wave input obtained from

the 'on-off' commands to the ACS thrusters. The second model used the rise and fall

times from an actual ground calibration test firing of an ACS thruster. Overall, it was

determined that both models identified the same total number of modes. And since the

power spectra for both models were similar, it was concluded that the 'on-off' commands

to the ACS thrusters can be used to create a square wave input for the purpose of system

identification.

As an observation, a Hankel matrix size whose columns are twice the number of

rows gave acceptable results. Of course, the more data that is included in the Hankel

matrix the better the modal identification, especially for the damping estimates. This was

particularly evident for the three-degree-of-freedom simulation that was considered.

A!so, a long forced response followed by free-decay is suggested for modal

identification. The forced response may help in separating closely spaced modes while

the free response may help in identifying low frequency modes. This type of excitation

will also minimize the poor conditioning of the input-output matrix (11) in OKID by

reducing the number of zeros.
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APPENDIXA

We can show that (T_A T) k-t = T-mAk-tT by mathematical induction.

Step (1): show true for k=2

(T-IA T) 2-1 = T-IA T

Step (2): assume true for k=n

(T-tAT) "-I ffi T"A _-' T

Step (3):

Now

show truth of (2) implies truth for kfn*l

(T-IA T)" = (T-tA T) "-I (T'IA T)

But from (2)

(T-_AT) " = (T-_A'-_T)(T_AT) ffi T-_A,,T

Therefore, since truth of (2) implies truth for k=n+l, then we conclude that

(T-tA T) k-t ffi TtA k-! T is true for all integer k.
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APPENDIX B

The following is taken from Ref. 22.

Singular Value Decomposition (SVD)

Let A be a real mx n matrix. Then there exist orthonormal matrices P (dimension

m x m ) and Q (dimension n x n ) such that

a = Vt)Q_ (B.D

prp = In, (mxm)

Q_'Q= I. (nx n)

where D is m x n and has the form

D= 0

r, = diag{_,,o_,...,o_}

oj>o2>...>o,>0 , rNmin(m,n)

F.,q. (B. 1) is called the singular value decomposition and am,..., a, are called the singular

values. Thus if rank[A] =k then a_._famf...=a=O.

The matrix P consists of the orthonormalized eigenvectors of AA r and the matrix

Q consists of the orthonormalized eigenvectors of A rA. The diagonal elements of I;

are the non-negative square roots of the eigenvalues of A rA if m > n or AA r if m < n.
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APPENDIX C Power Spectral Density for Square Wave and Ramped Input
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APPENDIX D OKID-ERA Results for Square Wave and Impulse Preserved _mPed Input

Table D. 1 RFFlc non-impulse preserved
7 : :

dump freq

(Hz)

1.1421 0.5314

1.0025 0.5670

1.00_ 0.7458

0.9926

0.9846

!.0104

0.7925

0.8078

0.11239

!.0036 0.8604

0.9988 i. 1337

!.1484 1.1926

1.0001 1.2227

0.9964 1.2553

1.0998 1.322 !

0.9892 1.3668

0.9613 1.4650

0.9905 1.5028

i.1526 1.6468

©x-freq
04O

0.5359

0.5670

0.7458

0.7922

0.8079

0.8240

ffUt_

0.9099

0.9999

0.9960

0.9952

i.0000

0.9996

0.8604 0.9987

1.1337 l.OOO0

I. 1954 0.9978

1.2227 1.0000

1.2552 !.0000

1.3231 0.9992

1.3672

1.4652

1.5027

1.6619

0.9998

0.9926

0.9998

0,9319

1.002 i 1,6781 1.6781 0.9943

1.0434 1.7253 i .7218 0.9815

0.9911,7 1.7399 1.7411 0.9891

1.8202

2.2330

2.2462

2.3591

2.4849

2.5888

2.8142

2.9887

3.1225

0.8546 1.8207

1.0111 2.2328

0.9989 2.2505

1.0125 2.3592

I.II25 2.4816

1, O0i 7 2.5889

0.9979 2.8142

1.0094 2.9888

1.0000 3.1223

1.0005 3.2789

1.0307 3.4719

3.2788

3.4725

0.9147

0.9732

0.9464

0.9970

0.9869

i.0000

1.0000

0.9998

0.9978

0.9956

0.9790
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Table D. 1-Continued

0.9859 3,5207

0.9808 3.6171

0.9147 3.7949

1.0534 4.0267

3.5206 0.9963

3.6180 0.9893

3.8091 0.9614

4.0308

1.0615 4.4492 4.453 I

1.0117 4.5621 4.5651

1.0.555 4.6618 4.6609

0.9_5

0.9798

0.9820

0.9844

Table D.2 RFFlc impulse preserved

,, , , , ,

0;)

1.0038

1.007 i

0.9855

0.9840

1.0!11

1.0039

0.998g

!.1855

i.0003
.... J

0.9958

! .0956

0.989 !

0.9612

0.991

i.1580

L

freq
(tlz)

0.5670

0.7458

ex-freq

(Hz)

0.5670

0.7458

0.7924 0.7922

0.8078 0.8079

0.8239 0.8240

0.8604

1.1337

1.1_7

0.8604

1.1337

I. 1954

mac

0.9999

0.9958

0.9944

1.0000

0.9997

0.9987

1.0000

0.9977

1.2227 1.2227 1.0000

1.2553 1.2552 1.0000

1.3221 1.323 i 0.9992

1.3672 0.9998

1.4652 0.9927

1.5027 0.9998

1.6619 0.9289

! .3668

1.4650

1.5028

1.6465

!.0012 1.6781

0.9997 1.7252

1.0016 1.7398

0.8457 ! .8205

! .0106 2.2328

2.25050.9997

1.678 I

1.7218

1.741 I

1.8202

2.2330

2.2462

0.9941

0.9814

0.9864

0.9151

0.9727

0.9452
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Table D.2-Continued

1.0537

2.3592

2.4g15

2.5H9

2.8142

2.9888

3.1223

3.2789

3.4719

3.5206

3,6171

3.7943

4.0268

4.4482

4.5616

4,6617

1.0128 0.9972

1,1073 2.4849 0.9879

!.00111 2.5888 1.0000

0.9979 2.8142 1.0000

i.0091 2.9887 0.9998

1.0000 3.1225 0.9977

1.0006 3.2788 0.9956

!.0311 3.4725 0.9796

0,9828 3.5206 0.9961

0.9868 3,6180 0.9900

0.9193 3.8091 0.9555

1.0523 4,0308 0.9437

1.0609 4.4531 0.9791

1.0175 4.5651 0.9823

0.98484,6609

Table D.3 RFF2c non-impulse preserved

freq

d4z)
ex-freq

(Hz)
damp

Or)
t

0.9721 0.5671 0.5670 1.0000

0.9844 0.7459 0.7458 0.9992

0.79220.'79220.9685 0.9987

0.9129 0.8034 0.8079 0.9999

0.9844 0.8241 0.8240 0.9934

0.9840 0_8606 0.8604 0.9687

0.9997 I. 1337 I. 1337 1.0000

0,9986 ! ,2227 1.2227 1.0000

1.0073 1,2552 1.2552 1.0000

0.99991.0107 1.3231 1.3231

0.9734 1.3670 1.3672

0.9700 1.4651 1.4652

0.9999

0.9931

0.9886 1.5030 !.5027 0.9998

1.1807 1.6006 1.6017 0.9999
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Table D.3-Continued

!. 1034

0.9979

1.0167

1.0022

!.0222

0.9994

1.7182

1.7401

2.2335

2.2507

2.3592

2.4833

2.5888

1.0028 2.8143

1.0022 2.9888

1.0045 3.1223

0.9990 3.2789

1.0011 3.4729

1.0148 3.5196

0.8935 3.6197

1.0669 3.8046

!.7218 0.9803

1.741 ! 0,9709

2.2330 0,9855

2.2515 0.9557

2.3591

2.4849

2.5888

2.8142

0.9998

0.9800

1.0000

!.0000

2.9887 ! .0000

3.1225 0,9976

3.2788 0.9968

3.4725 0.9846

3.5206 0.9992

3.6180 0.9658

3.8091 0.9935

1.0171 4.0282 4.0308

0.9886 4.1156 4.1104

4.1989

0.9864

0.9360

4.1967 0.9591

4.3193 0.9696

4.4531 0.9931

4.5651

1.1866

0,9672 4.2930

1.0519 4.4496

0,9386

!.018 i

4.5682

4.6615 4.6609

Table D.4 RFF2c impulse preserved

0.9954

dsmp

0.9995

freq

(Hz)

ex-freq

(tlz)

0.9732 0.5671 0.5670 1.0000

0.8057 0.6700 0.6660 0.9670

0.9850 0.7459 0.7458 0.9992

0.9701 0.7922 0.7922 0.9987

0.9091 0.8094 0.8079 0.9999

0.9849 0.824 i 0.8240 0,9933

0._060.9837
==.

0.8604 0.9_9
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!

i y

TableD,4:Continued

0.9996

0.9982

1.0075

1.1337

0.9374

1.2227

1.1337

1.2227

4.5677

1.0000

!.0000

1.2553 1.2552 1.0000

!.0094 1.3231 1.3231 0.9999

0.9735 1.3670 1.3672 0.9999

0.9720 !.4651 1.4652 0.9934

0.9877 1.5030 1.5027 0.9998

1.1850 1.6007 1.6017 0.9999

!.1532 1.7186 i.7218 0.9816

1.1024 1.7401 !.7411 0.9723

0.9979 2.2335 2.2330 0.9855

1.0157 2.2507 2.2515 0.9548

1.0022 2.3592 2.3591 0.9998

1.0189 2.4833 2.4849 0.9801
,Jl,, i i

0.9996 2.5888 2.5888 1.0000

1.0027 2.8143 2.8142 1.0000

1.0021 2.9888 2.9887 !.0000

1.0041 3.1223 3.1225 0.9977

0.9988 3.2789 3.2788 0.9968

1.0008 3.4729 3.4725 0.9842

1.0133 3.5194 3.5206 0.9993

0.9006 3.6197 3.6180 0.9672

! .0633 3.8048 3.8091 0.9939

1.0173 4.0282 4.0308 0.9868

0.9908 4.1155 4.1104 0.9391

1.1886 4.1988 4.1967 0.9565

0.9675 4.2927 4.3193 0.9698

1.0507 4.4495 4.4531 0.9934

4.5651 0.9957

4.66091.0134 4.6614 0.9995
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Table D.5

(_)

i.0169

!.0183

1.0222

0.9339

RFF4c non-impulse preserved

i, ,,

froq ex-frcci

O(z) (Hz)

0.5672 0.5670

0.6707 0.6660

0.7451[ 0.7458

0.7926 0,7922

i .0428 0.8078

0.9916 0.8240

1,0038

0.9952

0.9659

1.1623

0.9934

0.9948

!.0092

1.0311

!.0162

1.0052

0.9985

1.O659

1.1728

!.0030

1 .OO84

0.9976

1.0480

0.9995

0.8604

0.8967

1.1339

1.1958

1.2227

1.2556

1.3235

1.3670

inrmc

1.4654

1.5031

1.5739

1.60_

2.0780

2.2330

0.9998

0.9475

0.9996

0.9932

0.8079 0.9999
m

0.8240 1.0000

0.8604 0.9975

0.8967 0.9670

2.2503

2.3591

2.4826

2.5888

0.9999 2.8143

0.9950 2.9888

1,0055

0.9990

1.0199

0.9751

1.0463

1.0113

3.1224

3.2789

3.4729

3.5209

3.6205

4.0289

i.1337

!. 1954

1.2227

1.2552

1.3231

1.3672

1.4652

1.5027

1.5739

1.6017

2.0857

2.2330

2.2515

0.9999

0.9912

!.0000

1.0000

0.9997

0.9997

0.9984

0.9996

0.9002

1.0000

0.9949

0.9771

0.9520

2.3591 0.9988

2.4849 0.9745

2.5888 1.0000

2.8142

2.9887

3.1225

3.2788

3.4725

!.0000

0.9997

0.9933

0.9864

0.9541

3.52O6 0.9932

3.6180 0.9944

4.O308 0.9467
m
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Table D.5-Continued

4.1104

1.0013

1.0725 4.1142

1.1709 4.1979 4.1967 0.9222

1.0588 4.4459 4.4531 0.9875

4.6609 0.99564.6611
,

0.9414

Table D.6

d-I,

1.0178

1.0212

1.0285

0.9502

1.0598

0.9904

1.0026

RFF4c impulse preserved

I. 1566

freq ex-freq mac
(Hz) (Hz)

0.5672 0,5670 0.9998

0.6711 0.6660 0.9533

0.7458 0.7458 0.9996

0.7931 0.7922 0,9874

0.8073 0.8079 0.9998

0.8240 0.8240 0.9999

0.8604 0.8604 0.9979

0.9967 0.8967 0.8967 0.9713

0.9635 1.1338 1.1337 0.9999

1.1958 1.1954 0.9907

0.9927 1.2227 ! .2227 1.0000

0.9932 1.2556 1.2352 ! .0000

1.0093 !.3234 1.3231 0.9997

! .0256 1.3670 1.3672 0.9997

1.4652 0.9983

1.5027 0.9996

!.0157 !.4654

i.0051 1.5031

0.9970 1.5739 1.5739 0.9093

i.0578 1.60_ 1.6017 1.0000

1. ! 449 2.0"/8 ! 2.0857 0.9956

1.0043 2.2330 2.2330 0.9798

2.2503 2.2515 0.95481.0057

0.9976 2.3591

2.4825

2.5888

1.0487

0.9993

1.0006

2.3591 0.9987

2.4849 0.9746

1.00002.5888

2.81422.8142 0.9999
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Table D.6-Continued

0,9951 2.9888

1.0040 3.1224

0.9992 3.2789

!,0128 3.4729

2.9887

3.1225

3.27U

3.4725

0.9741 3.5207 3.5206

! .0475 3.6205 3.6180

1.0134 4.0288 4.0308

1.0693 4.1140 4.1104

!.!747 4.1979 4.1967

4.4460

4.6605

!.0606

0.9905

4.4531

4.6609

0.9998

0.9962

0.9868

0.958X

0.9940

0.9943

0.94_5

0.9417

0.9265

0.9882

0.9945
• i
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APPENDIX E Power Spectral Density for Square Wave and Zero-Order Hold Ramped Input
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Figure E.2 PSD for RFF2 comparing impulse (dashed) and

non-impulse (solid) preserved input
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APPENDIX F Power Spectral Density for Square Wave and Thruster Model Input

1O2, RFF! - input I 10s _ - input 2
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APPENDIX G

Table G-! R_ye_red modes using . criterion 1 forRFFlc

OKID-ERA Results for Square Wave and Thruster Model Input

damp

non-impulsc prcscrved

1.9482

0.9457

damp
(_)

lmpulle p_ed

freq

Olz)
froq
0tz)

exact

freq
Otz)

1.0580 0.5369 0.948.5 ......... 0.5333

0.5673 0.9991 0.9921 0.5671 1.0000 0.5670

0.6710

0.7457

0.7923

0.8073

0.8242

0.8604

1.0012

!.1337

0.9545

1.0106

0.9068

0.9970

0.9924

0.9999

0.9959

0.9820

0.9825

1.0000

0.9930

0.9872

1.02.55

1.0213

0.9943

1.0318

0.9945

1.0018

0.9489

0.9993

0.7457

0.7924

0.8078

0.9820

0.9944

0.8240

0.8604

1.0021

!. 1337

0.9939 0.9557 i. 1954

1.0000 0.9969 1.2227

1.0000 1.0043 1.2553

1.04990.9951 1.3239

0.9943

0.9916

1.0011

0.9992

0.9989

!.0000

0.9994

0.9985

0.9798

1.0000

0.6660

0.7458

!.0036

1,1958

1.2231

!,2552

1.3239

0.7922

0.8079

0.8240

0.8604

1.0033

1.1337

0,9998 !. 1954

1.0000 1.2227

1.0000 1.2552

0.9986

1.0066 1.3668 0.9998 1.0062 ! .3673 0.9999

1.0343 1.4675 0.9258 .......

1.0227 1.5030 0.9997 1.0049 1.5030

1.6020

1.6782

1.7204

1.7407

1.7603

0.96270.9958

0.9153

0.9999!.6015

1.6784

1.7498

!.0032

1.0617

0.9927

1.0640

0.9933 1.7970

0.9997

0.9999

0.9960

0.9940

0.9904

0.9689

0.9386

0.9538

1.00(30

0.9985
, i

1.0081 1.9472

0.9907 2.0299

1. ! ! 63 2.0857

! .7943

1.0646

!.!829

0.9937

0.9383

0.9846

1.0737 1.9012 0.9236

...... °--

2.0307 0.9994

2.0902

! .0070

1.1295 0.9902

1.3231

1.3672

1.4652

1.5027

!.6017

1.6781

1.7218

1.7411

1.7610

1.7956

i .8905

1.9463

2.0297

2.0857
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Table G. 1-Continued

!.0092

0.9751

1.0301

1.00t3

0.9858

0.9979

1.0709

1.9718

m

0.93_

2.2331

2.2.500

2.3598

2.4834

2.5898

2.8135

2.9879
HH

3.1232

m

0.9590

3.5190

0.94?9

0.9896

0.9817

1.0000

0.9999

0.9990

0.9953

1.0163

0.9989

0.9903

1.0000

0.9933

!.0099

0.9895

1.0046

2.1155

2.2503

2.3590

2.4831

2.5888

2.8142

2.9887

3.1232

3.2777 0.9960 0.9836 3.2791

1.0407 3.4734 0.9823 .....

0.9 ! 85 1.0386 3.5209

0.8466

!.0817

0.99093.616110.8670 3.6204

3.6856

0.9672

0.9506

0.9959

0.9866

1.0000

0.9998

0.9998

0.9877

2.1163

2.2330

2.2515

2.3591

2.4849

2.5888

2.8142

2.9887

3.1225

0.9822 3.2788

--- 3.4725

0.9539 3.5206

0.9843

0.9877

3.6180

3.6905

0.9053 3.8098 0.9991 0.9889 3.8100 0.9992 3.8091

! .0171 3.8635 0.9936 ] .1408 3.8648 0.9949 3.8930

0.9135 4.0293 0.9389 ....... 4.03011

1.0150 4.0676 0.9347 ........ 4.0592

..... 0.9901 4.3206 0.99116 4.3193

I.II660.8561

0.8674

4.3681

4.4045

4.6448

0.9694

0.9487

0.9939

0.9934

0.9946

0.9098

0.98840.9629

0.9397

4.3859

4.4501

4.5579

4.6504

0.9686

1.0252

4.3812

4.4215

4.4531

4.5651

4.6609
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APPENDIX H

Table H. 1

RFFln

46

53

29

56

49

42

57

2a

2

32

47

39

61

41

59

52

3

33

34

30

1

44

58

48

43

51

36

5O

37

Output Ranking From Gram-Schmidt Orthogonalization

Ranking (output no.) of outputs from Gram-Schmidt

RFF2n

46

53

±

RFF4n

46

29

28 39

34 51

55 58

12

52

37

39

29

9

41

13

28

14

53

4O

2O

47 47

24 55

40 41

48 3

54 56

3 48

2 43

43 1

1944

! 44

17 34

3O 3O

51 52

RFFI234n

46

2

59

32

52

53

61

29

Concsten_ion

46

53

51

2

28

58

29

55

39 22

56 41

55 39

41 59

28 61

4 47

47

49 2O

3 43

43 49

58 56

34 19

19

48

49 49 51 48

32 36 36 36

44 34

I 44

30 52

3O

5O

37

5O 5O

2219

5O

4O
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TableH. 1-Continued

4O 22 25 25

35 15 42 17

25 3722

23 2O

25 42

18 45

55

45

24

38

7

13

20

5

15

11

27

21

31

36

13

10

27

23

I1

18

59

61

21

35

38

24

45 23

24 22

23 45

15

31

32

11

59

61

18

27

21

35

38

2O

42

13

15

21

IS

27

57

I1

35

38

25

37

24

45

17

42

23

32

5

15

18

13

7

57

11

27

21

35

38

8 57 57 26 26

10 8 i0 8 8

16 26 8 10 60

586O 16 6O

4 4 60 16

26 14 12 4

12 16 26 14

14 6 4 12

19 60 17 33

17 56 33 31

54

6

54 31

336
i,

54

4

10

16

14

12

33

54

31
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APPENDIXI DataAcquisitionErrors

The following is taken from Ref. 23.

consisted of the following

Sampling Delay Error

Scale Factor Error

Electrical Noise

Bias Error

Digitization Error

The data acquisition errors (noise model)

All random numbers were generated with a normal distribution. Measurements were

converted to g's before adding noise. That is, the multiplying factor was 1/386 since the

measurements were in in/secL

Sampling delay error was randomly generated for each output by using the time

delays given in Table I. Response at delayed time (noise data) was obtained by linearly

interpolating the response at the undelayed time (i.e., clean data).

Table I Sampling delay errors

Bus time uncertainty 0-i milli sec.

BIU time uncertainty +/-0.05milli sec.

Local MDM time +/-0.15 milli sec.

uncertainty

MDM channel skew 0-1.5 milli sec.

!13



Scale factor error was randomly generated for each output by using Table II.

Table II
I

Temperature variation
in accelerometer

Scale factor errors

+/-1.5%

MDM Signal conditioning +/-0.5%

card

Accelerometer internal

axis misalignment

Mounting misalignment

with Space Station

coordinate system

+/-o.z%

+/-o.ooo4t

Repeatability over +/-0.278%

3 years

A/D nonlinearity +/-0.5%

The response at each time was multiplied with the sum of the scale factor errors and this

number was added to the response itself.

Electrical noise was randomly generated for each output with a maximum amplitude

of 10 micro g. This signal was then filtered with a band pass filter allowing only -1 to

5 Hz components to remain. The Root Mean Square (RMS) value was computed for this

filtered noise signal. The filtered noise signal was divided by the RMS value and this

new noise signal was added to the response.

114



Biaserror was randomlygeneratedand added to each output by using Table HI.

Table III Bias errors

Temperature

Launch stress

Repeatability

over 3 years

+/-1 milli g

+/-0.1 milli g

+/-2.8 milli g

Digitization error was performed using Table IV.

Table IV Digitization errors

Ranges Resolution

(milli g) (milli g)

1.28 0.002

7.83 0.006

27.5 0.018

86.5 0.054
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